CHLORFENAPYR AS A MEANS OF COMBATING RESISTANT INSECT POPULATIONS

Main Article Content

K.S. Krestonoshina
A.G. Kinareykina
K.Yu. Maslakova
L.Ya. Yangirova
A.D. Mel'nichuk
S.S. Ivantsov
K.A. Esaulkova
I.V. Legay
G.V. Siben

Abstract

Knowledge about the mechanisms of resistance development to widely used insecticides and their inheritance in insects is necessary for effective pest control. The article describes the effect mechanism of the pyrrole insecticide chlorfenapyr, outlines information about the effectiveness of its use against different types of insects in laboratory and field conditions. The analysis of literary data from Russian and foreign sources over the past 20 years has been carried out. The data on research of insect resistance to chlorfenapyr are presented, the successes achieved in understanding the mechanisms of resistance formation in insects are described, and the main directions in modern research are established. The prospects of using chlorfenapyr to control the number of resistant insect populations are evaluated.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

Section
Plant protection and storage products

References

Беньковская Г. В. Распространение резистентности к инсектицидам в сибирских популяциях колорадского жука в связи с территориальной экспансией вредителя / Г. В. Беньковская, И. М. Дубовский // Вестник защиты растений. – 2020. – Т. 103. – № 1. – С. 37–39.

Давлианидзе Т. А. Санитарно-эпидемиологическое значение и резистентность к инсектицидам комнатных мух Musca domestica (аналитический обзор литературы 2000-2021 гг.) / Т. А. Давлианидзе, О. Ю. Еремина // Вестник защиты растений. – 2021. – Т. 104 – № 2. – С. 72–86.

Давлианидзе Т. А. Проинсектициды / Т. А. Давлианидзе, О. Ю Еремина // Медицинская паразитология и паразитарные болезни. – 2021. – № 1. – С. 54–63.

Еремина О. Ю. Хлорфенапир – перспективный инсектицид из группы пирролов для борьбы с резистентными синантропными насекомыми / О. Ю. Еремина // Пест-Менеджмент. – 2017. – № 1 (101). – С. 41–49.

Леонтьева Т. Л. Развитие устойчивости к инсектицидам у колорадского жука на территории республики Башкортостан / Т. Л. Леонтьева, Л. А. Сыртланова, Г. В. Беньковская // Вестник Башкирского государственного аграрного университета. – 2016. – № 2 (38). – С. 11–14.

Сухорученко Г. И. Резистентность к инсектицидам вредителей семенного картофеля в России / Г. И. Сухорученко, Г. П. Иванова, Т. И. Васильева и др. // Тезисы докладов: XVI Съезд русского энтомологического общества. – М. : ООО «Товарищество научных изданий КМК», 2022. – С. 122.

BusinesStat [сайт]. – URL:https://businesstat.ru/news/pesticides/ (дата обращения: 20.11.2022).

Ahmad M. Synergism of insecticides provides evidence of metabolic mechanisms of resistance in the obliquebanded leafroller Choristoneura rosaceana (Lepidoptera: Tortricidae) / M. Ahmad, R.M. Hollingworth // Pest Management Science. – 2004. – V.60(5). – P.465–473. – DOI: 10.1002/ps.829

Ahmadi E. Dichlorvos Resistance in the House Fly Populations, Musca domestica, of Iranian Cattle Farms / E. Ahmadi, J. Khajehali // Journal of arthropod-borne diseases. – 2020. – V. 14(4). – P. 344–352.

Ayesa P. Evaluation of Novel Insecticides for Control of Dengue Vector Aedes aegypti (Diptera: Culicidae) / P. Ayesa, L. C. Harrington, G. J. Scott // Journal of Medical Entomology. – 2006. – V. 43. – Is. 1. – P. 55–60.

Bass C. The global status of insect resistance to neonicotinoid insecticides / C. Bass, I. Denholmb, M. S. Williamson et al. // Pesticide Biochemistry and Physiology. – 2015. – V. 121. – P. 78–87.

Casu V. Soluble esterases as biomarkers of neurotoxic compounds in the widespread serpulid Ficopomatus enigmaticus (Fauvel, 1923) / V. Casu, F. Tardelli, L. De Marchi et al. // Journal of Environmental Science and Health, Part B. – 2019. – V.54(11). – P. 883–891. – DOI: 10.1080/03601234.2019.1640028.

Che-Mendoza A. Efficacy of targeted indoor residual spraying with the pyrrole insecticide chlorfenapyr against pyrethroid-resistant Aedes aegypti / A. Che-Mendoza, G. González-Olvera, A. Medina-Barreiro et al. // PLOS Neglected Tropical Diseases. – 2021. – V.15(10). – e0009822. –DOI: 10.1371/journal.pntd.0009822

Chien S-C. A fatal case of chlorfenapyr poisoning and a review of the literature / S-C. Chien, Y-J. Su // Journal of International Medical Research. – 2022. – М.50(9). 3000605221121965. – DOI: 10.1177/03000605221121965

Corine N. Chlorfenapyr (A Pyrrole Insecticide) Applied Alone or as a Mixture With Alpha-Cypermethrin for Indoor Residual Spraying Against Pyrethroid Resistant Anopheles Gambiae Sl: An Experimental Hut Study in Cove, Benin / N. Corine, C. Ngufor, J. Critchley et al. // PLoS One. – 2016. – V. 11:9. – P. 1 –14.

Freitas A.P. Evaluation of a Brain Ace-tylcholinesterase Extraction Method and Kinetic Constants after Methyl-Paraoxon Inhibition in Three Brazilian Fish Species / A.P. Freitas, C.R .Santos, P.N. Sarcinelli et al. // PLoS One. – 2016. – V.11(9) – e0163317. – DOI: 10.1371/journal.pone.0163317

Georghiou G. P. Management of resistance in arthropods / G. P. Georghiou // Pest resistance to pesticides. – Springer, Boston, MA, 1983. – P. 769–792.

Gonzalez-Morales M. A. Resistance to Fipronil in the Common Bed Bug (Hemiptera: Cimicidae) / M. A. Gonzalez-Morales, Z. DeVries, A. Sierras et al. // Journal оf Medical Entomology. – 2021. – V. 58(4). – P. 1798–1807.

Guglielmone A. A. Chlorfenapyr ear tags to control Haematobia irritans (L.) (Diptera: Muscidae) on cattle / A. A. Guglielmone, M. M. Volpogni, N. Scherling et. al // Veterinary Parasitology. – 2000. – V. 93. – P. 77–82.

Indira Devi P. Agrochemicals, Environment, and Human Health / P. Indira Devi, M. Manjula, R. V. Bhavani // Annual Review of Environment and Resources. – 2022. – V. 47(1) – P. 399–421.

Kakani E. G. Detection and geographical distribution of the organophosphate resistance-associated Delta 3Q ace mutation in the olive fruit fly, Bactrocera oleae (Rossi) / E. G. Kakani, E. Sagri, M. Omirou et al. // Pest management science. – 2014. – V. 70(5). – P. 743–750.

Karmaz E. New Nanospheres to Use in the Determination of ImidanPhosmet and Vantex Pesticides / E. Karmaz, E. H. Ozkan, N. K. Yetim et al. // Journal of inorganic and organometallic polymers and materials. – 2021. – V. 31(7). – P. 2915–2924.

Kouassi B. L. Susceptibility of Anopheles gambiae from Cote d'Ivoire to insecticides used on insecticide-treated nets: evaluating the additional entomological impact of piperonyl butoxide and chlorfenapyr / B. L. Kouassi, E. Constant, E. Tia et al. // Malaria journal. – 2020. – Vol. 19. – V. 1. – № 454. – P. 1–11.

Kristensen M. Selection and reversion of azamethiphos-resistance in a field population of the housefly Musca domestica (Diptera :Muscidae), and the underlying biochemical mechanisms / M. Kristensen, M. Knorr, A. G. Spencer et al. // Journal of economic entomology. – 2000. – V. 93(6). – P. 1788–1795.

Lang G. J. Can Acetylcholinesterase Serve as a Target for Developing More Selective Insecticides? / G. J. Lang, K. Y. Zhu, C. X. Zhang // Current drug targets. – 2012. – V. 13(4). – P. 495–501

Lima Neto J. E. Inheritance and fitness of Plutella xylostella (Lepidoptera: Plutellidae) resistance to chlorfenapyr / J. E. Lima Neto, L. M. da Solidade Ribeiro, H. A. A. de Siqueira // Journal of Economic Entomology. – 2021. – V. 114. – №. 2. – P. 875–884.

Lima Neto J. E. Selection of Plutella xylostella (L.)(Lepidoptera: Plutellidae) to chlorfenapyr resistance: heritability and the number of genes involved / J. E. Lima Neto, H. A. A. de Siqueira // Revista Caatinga. – 2017. –V. 30. – P. 1067–1072.

Liu Z.X. The role of Glutathione-S-transferases in phoxim and chlorfenapyr tolerance in a major mulberry pest, Glyphodes pyloalis walker (Lepidoptera: Pyralidae) / Z.X. Liu, X.R. Xing, X.H. Liang et al. // Pestic Biochem Physiol. – 2022. – V.181. – 105004. – DOI: 10.1016/j.pestbp.2021.

McLeod P. Toxicity, persistence, and efficacy of spinosad, chlorfenapyr, and thiamethoxam on eggplant when applied against the eggplant flea beetle (Coleoptera: Chrysomelidae) / P. McLeod, F. J. Diaz, D. T. Johnson // J Econ Entomol. – 2002. – V. 95(2). – P.331–335.

Mosha F. W. Experimental Hut Evaluation of the Pyrrole Insecticide Chlorfenapyr on Bed Nets for the Control of Anopheles Arabiensis and Culex Quinquefasciatus / F. W. Mosha, I. N. Lyimo, R. M. Oxborough et al. // Wiley Online Library. – 2008. – V. 13(5). – P. 644–652.

N’Guessan R. Control of pyrethroid-resistant Anopheles gambiae and Culex quinquefasciatus mosquitoes with chlorfenapyr in Benin / R. N’Guessan, P. Boko, A. Odjo et. al // Tropical Medicine & International Health. – 2009. – V. 14. – Is. 4. – P. 389–395.

N'Guessan R. Chlorfenapyr: a pyrrole insecticide for the control of pyrethroid or DDT resistant Anopheles gambiae (Diptera: Culicidae) mosquitoes / R. N'Guessan, P. Boko, A. Odjo et. al // Acta Trop. – 2007. – V. 102(1). – P. 69–78.

Oliver S. V. Evaluation of the pyrrole insecticide chlorfenapyr against pyrethroid resistant and susceptible Anopheles funestus (Diptera: Culicidae) / S. V. Oliver, M. L. Kaiser, O. R. Wood et al. // Wiley Online Library. – 2010. – V. 15(1). – P. 127–131.

Omwenga I. Prediction of dose-dependent in vivo acetylcholinesterase inhibition by profenofos in rats and humans using physiologically based kinetic (PBK) modeling-facilitated reverse dosimetry / I. Omwenga, S. S. Zhao, L. Kanja et al. // Archives of toxicology. – 2021. – V. 95(4). – P. 1287–1301.

Oxboroug R. M. The Activity of the Pyrrole Insecticide Chlorfenapyr in Mosquito Bioassay: Towards a More Rational Testing and Screening of Non-Neurotoxic Insecticides for Malaria Vector Control / R. M. Oxboroug, R. N'Guessan, R. Jones, et al. // Part of Springer Nature. – 2015. – V. 14.:124. – P. 1–11.

Poupardin R. Identification of carboxylesterase genes implicated in temephos resistance in the dengue vector Aedes aegypti / R. Poupardin, W. Srisukontarat, C. Yunta et al. // PLOS Neglected Tropical Diseases. – 2014. – V. 8(3). – P. 1–11.

Qayyum M.A. Multiple Resistances Against Formulated Organophosphates, Pyrethroids, and Newer-Chemistry Insecticides in Populations of Helicoverpa armigera (Lepidoptera: Noctuidae) from Pakistan / M.A. Qayyum, W. Wakil, M. J. Arif et al. // Journal of Economic Entomology. – 2015. – V.108(1). – P. 286–293. – DOI: 10.1093/jee/tou037

Raghavendra K. Chlorfenapyr: a new insecticide with novel mode of action can control pyrethroid resistant malaria vectors / K. Raghavendra, T.K. Barik, P. Sharma et al.// Malaria Journal. – 2011. – V. 10: 16. – DOI: 10.1186/1475-2875-10-16

Ranian K. Evaluation of Resistance to Some Pyrethroid and Organophosphate Insecticides and Their Underlying Impact on the Activity of Esterases and Phosphatases in House Fly, Musca domestica (Diptera: Muscidae) / K. Ranian, M.K. Zahoor, M.A. Zahoor et al. // Polish Journal of Environmental Studies. – 2021. – V.30(1). – P. 327–336. – DOI: 10.15244/pjoes/96240

Riaz B. Frequency of Pyrethroid Insecticide Resistance kdr Gene and Its Associated Enzyme Modulation in Housefly, Musca domestica L. Populations From Jhang, Pakistan / B. Riaz, M. K. Zahoor, K. Malik et al. // Frontiers in environmental science. – 2022. – V. 9. – № 806456. – P. 1–15.

Romero A. Evaluation of chlorfenapyr for control of the bed bug, Cimex lectularius L. / A. Romero, M. F. Potter, K. F. Haynes // Pest Management Science. – 2010. – V. 66. – Issue 11. – P. 1243–1248.

Sami A. J. A Comparative Study of Inhibitory Properties of Saponins (derived from Azadirachta indica) for Acetylcholinesterase of Tribolium castaneum and Apis mellifera / A. J. Sami , S. Bilal, M. Khalid et al. // Pakistan journal of zoology. – 2018. – V. 50(2). – P. 725–733

Sparks T. C. Insecticide resistance management and industry: the origins and evolution of the Insecticide Resistance Action Committee (IRAC) and the mode of action classification scheme / T. C. Sparks, N. Storer, A. Porter, R. Slater, R. Nauen // Pest Management Science. – 2021. – V. 77. – P. 2609–2619. – DOI: 10.1002/ps.6254

Uesugi R. Genetic basis of resistances to chlorfenapyr and etoxazole in the two-spotted spider mite (Acari: Tetranychidae) / R. Uesugi, K. Goka, M. H. Osakabe // Journal of economic entomology. – 2002. – V. 95. – №. 6. – P. 1267–1274.

Ullah S. Genetics, realized heritability and possible mechanism of chlorfenapyr resistance in Oxycarenus hyalinipennis (Lygaeidae: Hemiptera) / S. Ulah, R. M. Shah, S. A. Shad // Pesticide Biochemistry and Physiology. – 2016. – V. 133. – P. 91–96.

[US EPA] United States Environmental Protection Agency. Fact Sheets on New Active Ingredients. Pesticide Fact Sheet: Chlorfenapyr. – 2001. – URL: https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/fs_PC–129093_01-Jan-01.pdf (accessed: 30.11.2022).

van Leeuwen T. Biochemical analysis of a chlorfenapyr-selected resistant strain of Tetranychus urticae Koch / T. van Leeuwen, S. van Pottelberge, L. Tirry // Pest Management Science. – 2006. – V.62(5). – P.425–433.

van Leeuwen T. Genetic analysis and cross-resistance spectrum of a laboratory-selected chlorfenapyr resistant strain of two-spotted spider mite (Acari: Tetranychidae) / T. van Leeuwen, V. Stillatus, L. Tirry // Experimental & applied acarology. – 2004. – V. 32. – №. 4. – P. 249–261.

Wang Q. Field-evolved resistance to 11 insecticides and the mechanisms involved in Helicoverpa armigera (Lepidoptera: Noctuidae) / Q. Wang, C. Rui, L. Wang, et al. // Pest Management Science. – 2021. – V.77. – P. 5086–5095. – DOI: 10.1002/ps.6548

Wang X. Long-term monitoring and characterization of resistance to chlorfenapyr in Plutella xylostella (Lepidoptera: Plutellidae) from China / X. Wang, J. Wang, X. Cao et al. // Pest Management Science. – 2019. – V.75(3). – P. 591–597. – DOI: 10.1002/ps.5222

Wei Q. Comparison of Insecticide Susceptibilities of Empoasca vitis (Hemiptera: Cicadellidae) from Three Main Tea-Growing Regions in China / Q. Wei, H.-Y. Yu, C.-D. Niu, et al. // Journal of Economic Entomology. – 2015. – V.108(3). – P.1251–1259. – DOI: 10.1093/jee/tov063

World Health Organization. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes, 2nd ed.. World Health Organization. – 2016 – https://apps.who.int/iris/handle/10665/250677 (accessed: 30.11.2022).

Zhang K. Susceptibility levels of field populations of Frankliniella occidentalis (Thysanoptera: Thripidae) to seven insecticides in China / K. Zhang, J. Yuan, J. Wang et al. // Crop Protection. – 2022. – V. 153. – 105886. – DOI: 10.1016/j.cropro.2021.105886.

Irac-online. – URL: https://irac-online.org (accessed: 30.11.2022).