ИДЕНТИФИКАЦИЯ ПОЛИМОРФИЗМА ГЕНА ОСТЕОПОНТИН (OPN) В ПОПУЛЯЦИИ ГОЛШТИНСКОГО КРУПНОГО РОГАТОГО СКОТА РЕСПУБЛИКИ ТАТАРСТАН

Научная статья
DOI:
https://doi.org/10.23649/jae.2022.27.7.008
Выпуск: № 7 (27), 2022
Опубликована:
18.11.2022
PDF

Аннотация

Обнаружение плейотропных вариантов генов-кандидатов, влияющих на множество признаков, имеет первостепенное значение для повышения молочной продуктивности без ущерба воспроизводительной способности. У молочного скота ген OPN был идентифицирован, как позиционный ген-кандидат для многих QTL (локусов количественных признаков). Работа была направлена на изучение полиморфизма (c.8514C > T) гена OPN – Bsel I методом ПЦР-ПДРФ в популяции голштинского скота Республики Татарстан, оценено генетическое равновесие и структура популяции. В ходе ДНК-диагностики 258 голов коров идентифицированы аллели C (0,432) и T (0,568) и генотипы – CC (14,3%), CT (57,8%) и TT (27,9%), что свидетельствует о полиморфности с высоким уровнем генетического биоразнообразия. Вариабельность между наблюдаемым и ожидаемым распределением генотипов составила 8,06. Тестирование методом хи-квадрат установило, что генетическое равновесие в исследуемой популяции не нарушено. Установлено, что в зависимости от ареала обитания и породы частота встречаемости аллелей и генотипов гена OPN варьируется. Так как ген OPN ранее был ассоциирован с эмбриональным развитием, поддержанием беременности, многоплодием, а также молочной продуктивностью и качественным составом молока, включение ДНК-диагностики в селекционный процесс поможет стабилизировать молочную продуктивность без ущерба для воспроизводительной способности дойных коров.

Полный текст только в pdf

Список литературы

  • Гайнутдинова Э.Р. Совместимость молочной продуктивности и воспроизводительной способности коров-первотелок голштинской породы / Э.Р. Гайнутдинова, Н.Ю. Сафина, Ш.К. Шакиров // Вестник Казанского ГАУ. – 2020. – № 2(54). – С. 5–9. DOI 10.12737/2073-0462-2020-5-9

  • Сафина Н.Ю. Идентификация полиморфизма гена APAF1 у голштинского скота / Н.Ю. Сафина, З.Ф. Фаттахова, Э.Р. Гайнутдинова и др. // Международный вестник ветеринарии. –2022. – № 2. – С. 134–139. DOI: 10.52419/issn2072-2419.2022.2.134

  • Oldberg A. Cloning and sequence analysis of rat bone sialoprotein (osteopontin) cDNA reveals an Arg-Gly-Asp cell-binding sequence/ A. Oldberg, A. Franzen, D. Heinegård et al. // Proc Natl Acad Sci USA. – 1986. – Vol. 83. – P. 8819–8823.

  • Anggraeni A. Polimerfisme genetik dari gen IGF1, GH dan OPN pada persilangan sapi PO berdasarkan tipe kelahiran di Jawa Tengah / A. Anggraeni, C. Talib, S.A. Asmarasari et al. // JITV. – 2017. – Vol. 22(4). – P. 165–172. DOI: http://dx.DOI.org/10.14334/jitv.v22i4.1625

  • Salehi A. The Association of Bovine Osteopontin (OPN) Gene with Milk Production Traits in Iranian Holstein Bulls / A. Salehi , K. Nasiri, M. Aminafshar et al. // Iran J Biotech. – 2015. – Vol. 13(1): e1092 – P. 43–48. DOI:10.15171/ijb.1092

  • Pareek Ch.S. An association between the C>T single nucleotide polymorphism within intron IV of osteopontin encoding gene (SPP1) and body weight of growing Polish Holstein-Friesian cattle / Ch.S. Pareek, U. Czarnik, M. Pierzchała et al. // Animal Science Papers and Reports. – 2008. – Vol. 26, No.4. – P. 251–257.

  • Kułaj D. Effects of the c.8514C > T polymorphism in the osteopontin gene (OPN) on milk production, milk composition and disease susceptibility in Holstein-Friesian cattle / D. Kułaj, J. Pokorska, A. Ochrem et al. // Italian Journal of Animal Science Italian Journal of Animal Science. – 2019. – Vol. 18. Is. 1. – P. 546–553. DOI: 10.1080/1828051X.2018.1547129

  • Khatib H. The Association of Bovine PPARGC1A and OPN Genes with Milk Composition in Two Independent Holstein Cattle Populations / H. Khatib, I. Zaitoun, J. Wiebelhaus-Finger et al. // American Dairy Science Association. – 2007. – Vol. 90(6). – P. 2966–2970. DOI:10.3168/jds.2006-812

  • Khatib H. Short communication: Validation of in vitro fertility genes in a Holstein bull population / H. Khatib, R.L Monson, W. Huang et al. // J. Dairy Sci. –2010. – Vol. 93. – P. 2244–2249. DOI: 10.3168/jds.2009-2805

  • Kowlewska-Łuczak I. Genetic polymorphisms of FAM13A1, OPN, LAP3, and HCAP-G genes in Jersey cattle / I. Kowlewska-Łuczak, H. Kulig // Turkish Journal of Veterinary and Animal Sciences. – 2013. – Vol. 37. – P. 631–635. DOI:10.3906/vet-1105-3

  • Bissonnette, N. Short communication: Genetic association of variations in the osteopontin gene (SPP1) with lactation persistency in dairy cattle / N. Bissonnette // J. Dairy Sci. – 2017. – Vol. 101. - P.456–461. https://DOI.org/10.3168/jds.2017-13129

  • Rangaswami H. Nuclear factor inducing kinase: a key regulator in osteopontin-induced MAPK/Ikappa kinase dependent NF-kappaB-mediated promatrix metalloproteinase-9 activation / H. Rangaswami, A. Bulbule, G.C. Kundu // Trends in Cell Biology. – 2006. – Vol. 16. – P. 79–87.

  • Denhardt D.T. Osteopontin as a means to cope with environmental insults: regulation of inflammation, tissue remodeling, and cell survival / D.T. Denhardt, M. Noda, A.W. Oregan et al. // J Clin Invest. – 2001. – Vol. 107. – P. 1055–1061.

  • Leonard S. Effects of the Osteopontin Gene Variants on Milk Production Traits in Dairy Cattle / S. Leonard, H. Khatib, V. Schutzkus et al. // J. Dairy Sci. – 2005. – Vol. 88. – P. 4083–4086.

  • Monaco Е. Effect of osteopontin (OPN) onin vitro embryo development in cattle / Е. Monaco // Theriogenology. – 2009. – Vol. 71. – P. 450–457.

  • Меркурьева Е.А. Генетика с основами биометрии / Е.А. Меркурьева, Г.Н. Шангин-Березовский // М.: Колос .– 1983. – С. 400.

  • Pasandideh M. Association of bovine PPARGC1A and OPN genes with milk production and composition in Holstein cattle / M. Pasandideh, M.R. Mohammadabadi, A.K. Esmailizadeh et al. // Czech J. Anim. Sci. – 2015 (3). – Vol. 60. – P. 97–104. DOI: 10.17221/8074-CJAS

  • Lali F. A. Effect of Osteopontin gene variants on milk production traits in Holstein Friesian crossbred cattle of Kerala / F.A. Lali, K. Anilkumar, T. Aravindakshan et al. // Turkish Journal of Veterinary and Animal Sciences. – 2020. – Vol. 44. – P. 695–701. DOI:10.3906/vet-1812-4

  • De Mello F. Análise de diversidade genética do gene da osteopontina em bovinos da raça girolando / F. de Mello, M.F.M. Guimarães R, J.A. Cobuci et al. // R.Bras. Zootec. – 2011. – Vol.40 (11). – P. 2374–2377.

  • Boleckova J. The association of five polymorphisms with milk production traits in Czech Fleckvieh cattle / J. Boleckova // Czech J. Anim. Sci. – 2012. – Vol. 57(2). – P. 45–53.

  • Kormaz Agaoglu Ö. Genetic polymorphism of five genes associated with meat production traits in five cattle breeds in Turkey / Ö. Kormaz Agaoglu, B. Akyuz, B. Cinar Kul et al. // Kafkas Univ Vet Fak Derg. – 2015. – Vol. 21 (4). – P. 489–497. DOI: 10.9775/kvfd.2014.12722

  • Sharma M. Fixation of T Allele in C>T Polymorphism in Intron IV Region of Secreted Phosphoprotein 1 (SPP1) Gene in Indian Cattle Breeds / M. Sharma, S.P. Singh, M. Tiwari et al. // International Journal of Livestock Research. – 2019. – Vol. 9 (9). – P. 116–121. DOI 10.5455/ijlr.20190202104646

  • Koopaee H.Kh. Joint Analysis of the DGAT1, OPN and PPARGC1A Genes Effects on Variation of Milk Production and Composition in Holstein Cattle Population // H.Kh. Koopaee, M. Pasandideh, M. Dadpasand et al. // Iranian Journal of Applied Animal Science. – 2016. – Vol. 6(4). – P. 127–133.