ХЛОРФЕНАПИР КАК СРЕДСТВО БОРЬБЫ С РЕЗИСТЕНТНЫМИ ПОПУЛЯЦИЯМИ НАСЕКОМЫХ
Аннотация
Знания о механизмах развития резистентности и их наследовании у насекомых к широко применяемым инсектицидам необходимы для эффективной борьбы с насекомыми вредителями. В статье описан механизм действия пирролового инсектицида хлорфенапира, обобщены сведения об эффективности его применения против разных видов насекомых в лабораторных и полевых условиях. Проведен анализ литературных данных российских и зарубежных источников за последние 20 лет. Представлены данные по исследованиям устойчивости насекомых к хлорфенапиру, описаны успехи, достигнутые в понимании механизмов формирования резистентности у насекомых, и обозначены основные направления в современных исследованиях. Оценены перспективы использования хлорфенапира для контроля численности резистентных популяций насекомых.
Полный текст только в pdf
Список литературы
Беньковская Г. В. Распространение резистентности к инсектицидам в сибирских популяциях колорадского жука в связи с территориальной экспансией вредителя / Г. В. Беньковская, И. М. Дубовский // Вестник защиты растений. – 2020. – Т. 103. – № 1. – С. 37–39.
Давлианидзе Т. А. Санитарно-эпидемиологическое значение и резистентность к инсектицидам комнатных мух Musca domestica (аналитический обзор литературы 2000-2021 гг.) / Т. А. Давлианидзе, О. Ю. Еремина // Вестник защиты растений. – 2021. – Т. 104 – № 2. – С. 72–86.
Давлианидзе Т. А. Проинсектициды / Т. А. Давлианидзе, О. Ю Еремина // Медицинская паразитология и паразитарные болезни. – 2021. – № 1. – С. 54–63.
Еремина О. Ю. Хлорфенапир – перспективный инсектицид из группы пирролов для борьбы с резистентными синантропными насекомыми / О. Ю. Еремина // Пест-Менеджмент. – 2017. – № 1 (101). – С. 41–49.
Леонтьева Т. Л. Развитие устойчивости к инсектицидам у колорадского жука на территории республики Башкортостан / Т. Л. Леонтьева, Л. А. Сыртланова, Г. В. Беньковская // Вестник Башкирского государственного аграрного университета. – 2016. – № 2 (38). – С. 11–14.
Сухорученко Г. И. Резистентность к инсектицидам вредителей семенного картофеля в России / Г. И. Сухорученко, Г. П. Иванова, Т. И. Васильева и др. // Тезисы докладов: XVI Съезд русского энтомологического общества. – М. : ООО «Товарищество научных изданий КМК», 2022. – С. 122.
BusinesStat [сайт]. – URL:https://businesstat.ru/news/pesticides/ (дата обращения: 20.11.2022).
Ahmad M. Synergism of insecticides provides evidence of metabolic mechanisms of resistance in the obliquebanded leafroller Choristoneura rosaceana (Lepidoptera: Tortricidae) / M. Ahmad, R.M. Hollingworth // Pest Management Science. – 2004. – V.60(5). – P.465–473. – DOI: 10.1002/ps.829
Ahmadi E. Dichlorvos Resistance in the House Fly Populations, Musca domestica, of Iranian Cattle Farms / E. Ahmadi, J. Khajehali // Journal of arthropod-borne diseases. – 2020. – V. 14(4). – P. 344–352.
Ayesa P. Evaluation of Novel Insecticides for Control of Dengue Vector Aedes aegypti (Diptera: Culicidae) / P. Ayesa, L. C. Harrington, G. J. Scott // Journal of Medical Entomology. – 2006. – V. 43. – Is. 1. – P. 55–60.
Bass C. The global status of insect resistance to neonicotinoid insecticides / C. Bass, I. Denholmb, M. S. Williamson et al. // Pesticide Biochemistry and Physiology. – 2015. – V. 121. – P. 78–87.
Casu V. Soluble esterases as biomarkers of neurotoxic compounds in the widespread serpulid Ficopomatus enigmaticus (Fauvel, 1923) / V. Casu, F. Tardelli, L. De Marchi et al. // Journal of Environmental Science and Health, Part B. – 2019. – V.54(11). – P. 883–891. – DOI: 10.1080/03601234.2019.1640028.
Che-Mendoza A. Efficacy of targeted indoor residual spraying with the pyrrole insecticide chlorfenapyr against pyrethroid-resistant Aedes aegypti / A. Che-Mendoza, G. González-Olvera, A. Medina-Barreiro et al. // PLOS Neglected Tropical Diseases. – 2021. – V.15(10). – e0009822. –DOI: 10.1371/journal.pntd.0009822
Chien S-C. A fatal case of chlorfenapyr poisoning and a review of the literature / S-C. Chien, Y-J. Su // Journal of International Medical Research. – 2022. – М.50(9). 3000605221121965. – DOI: 10.1177/03000605221121965
Corine N. Chlorfenapyr (A Pyrrole Insecticide) Applied Alone or as a Mixture With Alpha-Cypermethrin for Indoor Residual Spraying Against Pyrethroid Resistant Anopheles Gambiae Sl: An Experimental Hut Study in Cove, Benin / N. Corine, C. Ngufor, J. Critchley et al. // PLoS One. – 2016. – V. 11:9. – P. 1 –14.
Freitas A.P. Evaluation of a Brain Ace-tylcholinesterase Extraction Method and Kinetic Constants after Methyl-Paraoxon Inhibition in Three Brazilian Fish Species / A.P. Freitas, C.R .Santos, P.N. Sarcinelli et al. // PLoS One. – 2016. – V.11(9) – e0163317. – DOI: 10.1371/journal.pone.0163317
Georghiou G. P. Management of resistance in arthropods / G. P. Georghiou // Pest resistance to pesticides. – Springer, Boston, MA, 1983. – P. 769–792.
Gonzalez-Morales M. A. Resistance to Fipronil in the Common Bed Bug (Hemiptera: Cimicidae) / M. A. Gonzalez-Morales, Z. DeVries, A. Sierras et al. // Journal оf Medical Entomology. – 2021. – V. 58(4). – P. 1798–1807.
Guglielmone A. A. Chlorfenapyr ear tags to control Haematobia irritans (L.) (Diptera: Muscidae) on cattle / A. A. Guglielmone, M. M. Volpogni, N. Scherling et. al // Veterinary Parasitology. – 2000. – V. 93. – P. 77–82.
Indira Devi P. Agrochemicals, Environment, and Human Health / P. Indira Devi, M. Manjula, R. V. Bhavani // Annual Review of Environment and Resources. – 2022. – V. 47(1) – P. 399–421.
Kakani E. G. Detection and geographical distribution of the organophosphate resistance-associated Delta 3Q ace mutation in the olive fruit fly, Bactrocera oleae (Rossi) / E. G. Kakani, E. Sagri, M. Omirou et al. // Pest management science. – 2014. – V. 70(5). – P. 743–750.
Karmaz E. New Nanospheres to Use in the Determination of ImidanPhosmet and Vantex Pesticides / E. Karmaz, E. H. Ozkan, N. K. Yetim et al. // Journal of inorganic and organometallic polymers and materials. – 2021. – V. 31(7). – P. 2915–2924.
Kouassi B. L. Susceptibility of Anopheles gambiae from Cote d'Ivoire to insecticides used on insecticide-treated nets: evaluating the additional entomological impact of piperonyl butoxide and chlorfenapyr / B. L. Kouassi, E. Constant, E. Tia et al. // Malaria journal. – 2020. – Vol. 19. – V. 1. – № 454. – P. 1–11.
Kristensen M. Selection and reversion of azamethiphos-resistance in a field population of the housefly Musca domestica (Diptera :Muscidae), and the underlying biochemical mechanisms / M. Kristensen, M. Knorr, A. G. Spencer et al. // Journal of economic entomology. – 2000. – V. 93(6). – P. 1788–1795.
Lang G. J. Can Acetylcholinesterase Serve as a Target for Developing More Selective Insecticides? / G. J. Lang, K. Y. Zhu, C. X. Zhang // Current drug targets. – 2012. – V. 13(4). – P. 495–501
Lima Neto J. E. Inheritance and fitness of Plutella xylostella (Lepidoptera: Plutellidae) resistance to chlorfenapyr / J. E. Lima Neto, L. M. da Solidade Ribeiro, H. A. A. de Siqueira // Journal of Economic Entomology. – 2021. – V. 114. – №. 2. – P. 875–884.
Lima Neto J. E. Selection of Plutella xylostella (L.)(Lepidoptera: Plutellidae) to chlorfenapyr resistance: heritability and the number of genes involved / J. E. Lima Neto, H. A. A. de Siqueira // Revista Caatinga. – 2017. –V. 30. – P. 1067–1072.
Liu Z.X. The role of Glutathione-S-transferases in phoxim and chlorfenapyr tolerance in a major mulberry pest, Glyphodes pyloalis walker (Lepidoptera: Pyralidae) / Z.X. Liu, X.R. Xing, X.H. Liang et al. // Pestic Biochem Physiol. – 2022. – V.181. – 105004. – DOI: 10.1016/j.pestbp.2021.
McLeod P. Toxicity, persistence, and efficacy of spinosad, chlorfenapyr, and thiamethoxam on eggplant when applied against the eggplant flea beetle (Coleoptera: Chrysomelidae) / P. McLeod, F. J. Diaz, D. T. Johnson // J Econ Entomol. – 2002. – V. 95(2). – P.331–335.
Mosha F. W. Experimental Hut Evaluation of the Pyrrole Insecticide Chlorfenapyr on Bed Nets for the Control of Anopheles Arabiensis and Culex Quinquefasciatus / F. W. Mosha, I. N. Lyimo, R. M. Oxborough et al. // Wiley Online Library. – 2008. – V. 13(5). – P. 644–652.
N’Guessan R. Control of pyrethroid-resistant Anopheles gambiae and Culex quinquefasciatus mosquitoes with chlorfenapyr in Benin / R. N’Guessan, P. Boko, A. Odjo et. al // Tropical Medicine & International Health. – 2009. – V. 14. – Is. 4. – P. 389–395.
N'Guessan R. Chlorfenapyr: a pyrrole insecticide for the control of pyrethroid or DDT resistant Anopheles gambiae (Diptera: Culicidae) mosquitoes / R. N'Guessan, P. Boko, A. Odjo et. al // Acta Trop. – 2007. – V. 102(1). – P. 69–78.
Oliver S. V. Evaluation of the pyrrole insecticide chlorfenapyr against pyrethroid resistant and susceptible Anopheles funestus (Diptera: Culicidae) / S. V. Oliver, M. L. Kaiser, O. R. Wood et al. // Wiley Online Library. – 2010. – V. 15(1). – P. 127–131.
Omwenga I. Prediction of dose-dependent in vivo acetylcholinesterase inhibition by profenofos in rats and humans using physiologically based kinetic (PBK) modeling-facilitated reverse dosimetry / I. Omwenga, S. S. Zhao, L. Kanja et al. // Archives of toxicology. – 2021. – V. 95(4). – P. 1287–1301.
Oxboroug R. M. The Activity of the Pyrrole Insecticide Chlorfenapyr in Mosquito Bioassay: Towards a More Rational Testing and Screening of Non-Neurotoxic Insecticides for Malaria Vector Control / R. M. Oxboroug, R. N'Guessan, R. Jones, et al. // Part of Springer Nature. – 2015. – V. 14.:124. – P. 1–11.
Poupardin R. Identification of carboxylesterase genes implicated in temephos resistance in the dengue vector Aedes aegypti / R. Poupardin, W. Srisukontarat, C. Yunta et al. // PLOS Neglected Tropical Diseases. – 2014. – V. 8(3). – P. 1–11.
Qayyum M.A. Multiple Resistances Against Formulated Organophosphates, Pyrethroids, and Newer-Chemistry Insecticides in Populations of Helicoverpa armigera (Lepidoptera: Noctuidae) from Pakistan / M.A. Qayyum, W. Wakil, M. J. Arif et al. // Journal of Economic Entomology. – 2015. – V.108(1). – P. 286–293. – DOI: 10.1093/jee/tou037
Raghavendra K. Chlorfenapyr: a new insecticide with novel mode of action can control pyrethroid resistant malaria vectors / K. Raghavendra, T.K. Barik, P. Sharma et al.// Malaria Journal. – 2011. – V. 10: 16. – DOI: 10.1186/1475-2875-10-16
Ranian K. Evaluation of Resistance to Some Pyrethroid and Organophosphate Insecticides and Their Underlying Impact on the Activity of Esterases and Phosphatases in House Fly, Musca domestica (Diptera: Muscidae) / K. Ranian, M.K. Zahoor, M.A. Zahoor et al. // Polish Journal of Environmental Studies. – 2021. – V.30(1). – P. 327–336. – DOI: 10.15244/pjoes/96240
Riaz B. Frequency of Pyrethroid Insecticide Resistance kdr Gene and Its Associated Enzyme Modulation in Housefly, Musca domestica L. Populations From Jhang, Pakistan / B. Riaz, M. K. Zahoor, K. Malik et al. // Frontiers in environmental science. – 2022. – V. 9. – № 806456. – P. 1–15.
Romero A. Evaluation of chlorfenapyr for control of the bed bug, Cimex lectularius L. / A. Romero, M. F. Potter, K. F. Haynes // Pest Management Science. – 2010. – V. 66. – Issue 11. – P. 1243–1248.
Sami A. J. A Comparative Study of Inhibitory Properties of Saponins (derived from Azadirachta indica) for Acetylcholinesterase of Tribolium castaneum and Apis mellifera / A. J. Sami , S. Bilal, M. Khalid et al. // Pakistan journal of zoology. – 2018. – V. 50(2). – P. 725–733
Sparks T. C. Insecticide resistance management and industry: the origins and evolution of the Insecticide Resistance Action Committee (IRAC) and the mode of action classification scheme / T. C. Sparks, N. Storer, A. Porter, R. Slater, R. Nauen // Pest Management Science. – 2021. – V. 77. – P. 2609–2619. – DOI: 10.1002/ps.6254
Uesugi R. Genetic basis of resistances to chlorfenapyr and etoxazole in the two-spotted spider mite (Acari: Tetranychidae) / R. Uesugi, K. Goka, M. H. Osakabe // Journal of economic entomology. – 2002. – V. 95. – №. 6. – P. 1267–1274.
Ullah S. Genetics, realized heritability and possible mechanism of chlorfenapyr resistance in Oxycarenus hyalinipennis (Lygaeidae: Hemiptera) / S. Ulah, R. M. Shah, S. A. Shad // Pesticide Biochemistry and Physiology. – 2016. – V. 133. – P. 91–96.
[US EPA] United States Environmental Protection Agency. Fact Sheets on New Active Ingredients. Pesticide Fact Sheet: Chlorfenapyr. – 2001. – URL: https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/fs_PC–129093_01-Jan-01.pdf (accessed: 30.11.2022).
van Leeuwen T. Biochemical analysis of a chlorfenapyr-selected resistant strain of Tetranychus urticae Koch / T. van Leeuwen, S. van Pottelberge, L. Tirry // Pest Management Science. – 2006. – V.62(5). – P.425–433.
van Leeuwen T. Genetic analysis and cross-resistance spectrum of a laboratory-selected chlorfenapyr resistant strain of two-spotted spider mite (Acari: Tetranychidae) / T. van Leeuwen, V. Stillatus, L. Tirry // Experimental & applied acarology. – 2004. – V. 32. – №. 4. – P. 249–261.
Wang Q. Field-evolved resistance to 11 insecticides and the mechanisms involved in Helicoverpa armigera (Lepidoptera: Noctuidae) / Q. Wang, C. Rui, L. Wang, et al. // Pest Management Science. – 2021. – V.77. – P. 5086–5095. – DOI: 10.1002/ps.6548
Wang X. Long-term monitoring and characterization of resistance to chlorfenapyr in Plutella xylostella (Lepidoptera: Plutellidae) from China / X. Wang, J. Wang, X. Cao et al. // Pest Management Science. – 2019. – V.75(3). – P. 591–597. – DOI: 10.1002/ps.5222
Wei Q. Comparison of Insecticide Susceptibilities of Empoasca vitis (Hemiptera: Cicadellidae) from Three Main Tea-Growing Regions in China / Q. Wei, H.-Y. Yu, C.-D. Niu, et al. // Journal of Economic Entomology. – 2015. – V.108(3). – P.1251–1259. – DOI: 10.1093/jee/tov063
World Health Organization. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes, 2nd ed.. World Health Organization. – 2016 – https://apps.who.int/iris/handle/10665/250677 (accessed: 30.11.2022).
Zhang K. Susceptibility levels of field populations of Frankliniella occidentalis (Thysanoptera: Thripidae) to seven insecticides in China / K. Zhang, J. Yuan, J. Wang et al. // Crop Protection. – 2022. – V. 153. – 105886. – DOI: 10.1016/j.cropro.2021.105886.
Irac-online. – URL: https://irac-online.org (accessed: 30.11.2022).