ОБЩЕЕ ЗЕМЛЕДЕЛИЕ И PACTEHИEBOДСТВО / GENERAL AGRICULTURE AND CROP PRODUCTION

DOI: https://doi.org/10.23649/JAE.2023.39.12

ДЕЙСТВИЕ БИОПРЕПАРАТА БИОКОМПОЗИТ-ДЕСТРУКТ НА УРОЖАЙНОСТЬ СЕЛЬСКОХОЗЯЙСТВЕННЫХ КУЛЬТУР

Научная статья

Киселёва Т.С.1, *

¹ORCID: 0009-0007-9539-4127;

¹ Государственный аграрный университет Северного Зауралья, Тюмень, Российская Федерация

* Корреспондирующий автор (kiselevat2501[at]yandex.ru)

Аннотация

В статье представлены данные по продуктивности сельскохозяйственных культур за 2022-2023 гг. по отвальной обработке почвы на 20-22 см. Цель публикации – выявить наибольшую продуктивность сельскохозяйственных культур. Урожайность зерновых и зернобобовых учитывали по вариантам опыта комбайном TERRION-2010, урожайность однолетних трав скашиванием с 10 м² и пропашных путем взвешивания в трехкратной повторности. В результате исследований выявлено, что применение биопрепарата Биокомпозит-Деструкт способствовало увеличению урожайности сельскохозяйственных культур, а именно, однолетних трав на 36,4%, яровой пшеницы на 32,0 и 29,6%, свёклы на 4,2%, гороха на 53,8%, нута на 40,0%. Эффективнее вносить почвенный биопрепарат весной перед посевом сельскохозяйственной культуры.

Ключевые слова: однолетние травы, яровая пшеница, зернобобовые культуры, свёкла, почвенный биопрепарат.

INFLUENCE OF BIODRUG BIOCOMPOSITE-DESTRUCT ON CROP YIELDS

Research article

Kiselvova T.S.1, *

¹ORCID: 0009-0007-9539-4127;

¹ State Agrarian University of the Northern Trans-Urals, Tyumen, Russian Federation

* Corresponding author (kiselevat2501[at]yandex.ru)

Abstract

The article presents data on crop productivity for 2022-2023 on 20-22 cm ploughing. The aim of the publication is to identify the highest productivity of agricultural crops. Yield of cereals and legumes were counted by variants of the experiment by TERRION-2010 combine harvester, yield of annual grasses by mowing from 10 M^2 and row crops by weighing in threefold repetition. As a result of research revealed that the use of biodrug Biocomposite-Destruct contributed to an increase in crop yields, namely, annual grasses by 36.4%, spring wheat by 32.0 and 29.6%, beet by 4.2%, peas by 53.8%, chickpeas by 40.0%. It is more effective to apply soil biodrug in spring before sowing a crop.

Keywords: annual grasses, spring wheat, leguminous crops, beetroot, soil biodrug.

Введение

Народнохозяйственная значимость увеличения производства яровой пшеницы исключительно велика. Задача заключается в том, чтобы путем существенного повышения урожайности значительно увеличить производство зерна и продажу его государству. Для этого нужна такая система земледелия, которая могла бы противостоять засушливому климату северной лесостепи [13], [1, С. 53], а сочетание в севообороте различных сельскохозяйственных культур обеспечивала наибольшую продуктивность [11, С. 33].

Возделывание сельскохозяйственных культур по традиционной технологии связано с высоким расходом антропогенной энергии на вспашку и последующие операции, и есть необходимость поиска альтернативных агроприемов [10, С. 3]. По мнению Рзаевой В.В., в Тюменской области при возделывании сельскохозяйственных культур отвальная основная обработка почвы показывает преимущество над дифференцированной и безотвальной обработками [13], [9, С. 39].

В условиях интенсификации и специализации производства, направленной на повышение урожайности и ее стабильности севооборот является одним из основных элементов технологии возделывания полевых культур. Правильный выбор места культуры в севообороте не только повышает урожайность, но и улучшает качество получаемой сельскохозяйственной продукции [5, С. 52].

В последние годы ощутимее выражаются перемены погодных обстоятельств во взаимосвязи с массовым потеплением в нашем мире: возросла сумма осадков в осенне-зимний период, увеличилась температура на протяжении зимы, больше и дольше начались засухи в летний сезон [3, С. 2]. Одной из ключевых проблем интенсификации сельского хозяйства была и остается проблема увеличения производства экологически чистой продукции, поэтому необходимо применение биологических препаратов. Важнейшим источником биологически полноценного белка являются зернобобовые культуры [12, С. 36]. Зернобобовые являются новыми сельскохозяйственными культурами для Западной Сибири. Агроклиматические условия Западной Сибири пригодны для возделывания скороспелых сортов, адаптированных к местным условиям, однако урожайность их невелика. Сложившаяся ситуация диктует необходимость разработки такой технологии возделывания зернобобовых культур и их место в севообороте, которые обеспечили бы получение высокой продуктивности [6, С. 4].

Цель исследования: изучить действие биопрепарата Биокомпозит-Деструкт на урожайность сельскохозяйственных культур в северной лесостепи Тюменской области.

Методы и принципы исследования

Исследования проводили на базе Φ ГБОУ ВО ГАУ Северного Зауралья опытное поле АО ПЗ «Учхоз» в 2022-2023 году. Для определения всхожести и сохранности растений поле проходят по диагонали и через определённые расстояния на поверхность почвы накладывают рамку 1,0 м 2 и подсчитывают культурные растения через 10 дней после посева и перед уборкой [2]. Урожайность зерновых и зернобобовых культур учитывается по вариантам опыта комбайном TERRION–2010 в трехкратной повторности. Уборку урожая проводили при 16% влажности зерна зернобобовых и 14% – зерновых. Бункерная урожайность с каждой делянки взвешивается и пересчитывается на 16 и 14% влажность и 100% чистоту [2], урожайность свёклы и однолетних трав рассчитывали путем взвешивания с 10 м 2 в трехкратной повторности. Экономическая эффективность рассчитана согласно затратам по технологическим картам [4], математическая обработка данных рассчитана средствами Пакета анализа MS Excel.

Основные результаты

Климат Тюменской области континентальный, с холодной продолжительной зимой и недолгим теплым летом. Годовое количество осадков составляет 374 мм, из них 232 мм выпадает в период вегетации сельскохозяйственных культур. Сумма температур выше 5 °С варьирует в пределах 1900-2050 °С, выше 10 °С – 1860-1940 °С. Средняя многолетняя величина ГТК – 1.1-1.3, что характеризует территорию как умеренно увлажнённую [4, С. 25]. В среднем, за два года исследования (2022-2023) климат лесостепной зоны выдался теплым и влажным. В сравнении с многолетними данными температура воздуха была теплее на 2,3 °С, осадков выпало меньше многолетних наблюдений на 10,9 мм.

Почва опытного поля – чернозём выщелоченный тяжелосуглинистого гранулометрического состава, гумусовый горизонт до 38 см, пахотный слой до 27 см [4, С. 25].

Реакция почвенной среды чернозема выщелоченного в Тюменской области — среднекислая на вариантах с безотвальной и нулевой обработкой почвы и составила 5,0 (ед. рН). По отвальному и дифференцированному способу обработки реакция почвенной среды слабокислая и составила 5,1-5,2 (ед. рН). Содержание подвижного фосфора — повышенное по отвальному, безотвальному, дифференцированному и нулевому способам и варьирует от 12,0 до 12,2 мг/100 гр. Содержание обменного калия находится в пределах 10,9-11,0 мг/100 гр. почвы и характеризуется как повышенное. По всем вариантам основной обработки почвы содержание гумуса среднее и находится в пределах от 5,0 до 5,1% [7].

За исследуемые годы (2022-2023) всхожесть сельскохозяйственных культур без применения агрохимикатов варьировала в пределах 80,0-84,2% (таблица 1).

Таблица 1 - Влияние почвенного биопрепарата Биокомпозит-Деструкт на всхожесть сельскохозяйственных культур DOI: https://doi.org/10.23649/JAE.2023.39.12.1

Вариант	Однолетн ие травы	Яровая пшеница первая	Свёкла сахарная	Свёкла столовая	Яровая пшеница вторая	Горох	Нут
1. Контроль (вода), %	80,2	83,3	80,0	80,3	82,3	84,2	81,1
2. Биокомпо зит Деструкт (3,0 л/га), %	82,4	86,1	82,1	83,0	85,5	88,5	86,6
HCP ₀₅	1,2	1,1	1,3	1,2	1,0	1,1	1,2

Примечание: 2022-2023 гг

В зависимости от применения почвенного биопрепарата всхожесть сельскохозяйственных культур выросла на 2,1-5,5 %. Наибольшая всхожесть отмечена при возделывании гороха и нута – 88,5 и 86,6% соответственно.

При изучении сохранности сельскохозяйственных культур без применения почвенного биопрепарата Биокомпозит-Деструкт варьировала в пределах 77,3-87,3% (таблица 2).

Таблица 2 - Влияние почвенного биопрепарата Биокомпозит-Деструкт на сохранность сельскохозяйственных культур DOI: https://doi.org/10.23649/JAE.2023.39.12.2

Вариант	Однолетн	Яровая	Свёкла	Свёкла	Яровая	Горох	Нут
	ие травы	пшеница	сахарная	столовая	пшеница		

		первая			вторая		
1. Контроль (вода), %	77,3	79,8	78,4	77,9	79,5	80,2	79,4
2. Биокомпо зит Деструкт (3,0 л/га), %	81,3	84,2	81,5	82,1	84,4	87,3	84,2
HCP ₀₅	1,0	1,2	1,1	1,1	1,2	1,1	1,0

Примечание: 2022-2023 гг

Применение почвенного биопрепарата Биокомпозит-Деструкт способствовало увеличению сохранности сельскохозяйственных культур на 3,1-7,1%. Наибольшая всхожесть отмечена при возделывании гороха – 87,3%.

Урожайность однолетних трав (горох+овес) в 2022-2023 гг. с весенним применением биопрепарата больше контроля на 0.4 т/га при HCP_{05} =0.2 (таблица 3).

Таблица 3 - Влияние почвенного биопрепарата Биокомпозит-Деструкт на урожайность сельскохозяйственных культур DOI: https://doi.org/10.23649/JAE.2023.39.12.3

Вариант	Однолетн ие травы	Яровая пшеница первая	Свёкла сахарная	Свёкла столовая	Яровая пшеница вторая	Горох	Нут
1. Контроль (вода), т/га	1,1	2,5	28,4	29,0	2,7	1,3	1,5
2. Биокомпо зит Деструкт (3,0 л/га), т/га	1,5	3,3	29,6	30,2	3,5	2,0	2,1
HCP ₀₅	0,2	0,6	0,7	0,8	0,5	0,4	0,6

Примечание: 2022-2023 гг; весеннее внесение

Урожайность яровой пшеницы (первой в севообороте) сорта Новосибирская 31 при применении Биокомпозит-Деструкт отмечена больше контроля на $0.8\,$ т/га, урожайность второй пшеницы составила $3.5\,$ т/га, что больше контрольного варианта на $0.8\,$ т/га при HCP_{05} =0.5.

При возделывании свёклы сахарной и столовой в северной лесостепи тюменской области урожайность с применением биопрепарата была отмечена 29,6 и 30,2 т/га соответственно, при HCP_{05} =0,7 и 0,8, что больше контроля на 1,2 т/га.

Урожайность зернобобовых культур, а именно, гороха и нута с применением почвенного Биодеструктора увеличилась, по сравнению с контрольным вариантом (вода) на 0,7 и 0,6 т/га при HCP₀₅=0,4 и 0,6 соответственно.

Осеннее применение биопрепарата Биокомпозит-Деструкт привело к увеличению урожайности горохоовсяной смеси на 0,3 т/га при HCP $_{05}$ =0,2 в сравнении с контролем (таблица 4).

Таблица 4 - Влияние почвенного биопрепарата Биокомпозит-Деструкт на урожайность сельскохозяйственных культур DOI: https://doi.org/10.23649/JAE.2023.39.12.4

Вариант	Однолетн ие травы	Яровая пшеница первая	Свёкла сахарная	Свёкла столовая	Яровая пшеница вторая	Горох	Нут
1. Контроль (вода),	1,1	2,5	28,4	29,0	2,7	1,3	1,5

т/га							
2. Биокомпо зит Деструкт (3,0 л/га), т/га	1,4	3,1	29,4	30,0	3,3	1,9	2,0
HCP ₀₅	0,2	0,5	0,7	0,6	0,5	0,4	0,3

Примечание: 2022-2023 гг; осенее внесение

Урожайность яровой пшеницы (первой в севообороте) сорта Новосибирская 31 при применении Биокомпозит-Деструкт отмечена больше контроля на 0.6 т/га, урожайность второй пшеницы составила 3.3 т/га, что больше контрольного варианта на 0.6 т/га при HCP_{05} =0.5.

При возделывании свёклы сахарной и столовой в северной лесостепи тюменской области урожайность с применением биопрепарата была отмечена 29,4 и 30,0 т/га соответственно, при HCP_{05} =0,7 и 0,6, что больше контроля на 1,0 т/га.

Урожайность зернобобовых культур, а именно, гороха и нута с применением почвенного Биодеструктора увеличилась, по сравнению с контрольным вариантом (вода) на 0,7 и 0,5 т/га при HCP₀₅=0,4 и 0,3 соответственно.

Биокомпозит-Деструкт — консорциум в культуральной жидкости хозяйственно-ценных штаммов [7] нескольких видов полезных бактерий с общим титром не менее $1\cdot10^9$ КОЕ/мл. Специализированное жидкое микробиологическое удобрение-биодеструктор для ускоренного разложения соломы, пожнивных и органических остатков, предназначенное для обработки почвы перед посевом и после уборки сельскохозяйственных культур [14].

Заключение

При возделывании сельскохозяйственных культур в северной лесостепи Тюменской области применение почвенного биопрепарата Биокомпозит-Деструкт (3,0 л/га) позволяет повысить всхожесть сельскохозяйственных культур на 2,1-5,5%, сохранность на 3,1-7,1%, урожайность на 4,1-53,8%, потому как состав из спорообразующих бактерий, обладает высокими деструкторными и ростостимулирующими свойствами, кроме того, происходит быстрое разложение соломы, пожнивных и органических остатков в почве.

Благодарности

Научному руководителю Рзаевой Валентине Васильевне

Конфликт интересов

Не указан.

Рецензия

Все статьи проходят рецензирование. Но рецензент или автор статьи предпочли не публиковать рецензию к этой статье в открытом доступе. Рецензия может быть предоставлена компетентным органам по запросу.

Acknowledgement

The auhtor expresses their gratitude to their scientific supervisor Valentina Vasilievna Rzaeva

Conflict of Interest

None declared.

Review

All articles are peer-reviewed. But the reviewer or the author of the article chose not to publish a review of this article in the public domain. The review can be provided to the competent authorities upon request.

Список литературы / References

- 1. Абдриисов Д.Н. Формирование засоренности посевов яровой пшеницы, возделываемой по парам в Северо-Казахстанской области / Д.Н. Абдриисов, В.В. Рзаева // Вестник Мичуринского государственного аграрного университета. 2023. № 1(72). С. 53-56.
 - 2. Доспехов Б.А. Методика опытного дела / Б.А. Доспехов. М.: Агропромиздат, 1985. 351 с.
- 3. Киселева Т.С. Запасы доступной влаги при возделывании нута в северной лесостепи Тюменской области / Т.С. Киселева, В.В. Рзаева // Аграрный вестник Урала. 2019. № 9(188). С. 2-7. DOI: 10.32417/article_5dadfe3aeaba53.15283418.
- 4. Киселева Т.С. Влияние основной обработки почвы на продуктивность зернобобовых культур в северной лесостепи Западной Сибири / Т.С. Киселева, В.В. Рзаева. Тюмень: Титул, 2023. 163 с.
- 5. Краснова Е.А. Урожайность сои в зависимости от предшественника и способа обработки почвы в северной лесостепи Тюменской области / Е.А. Краснова, В.В. Рзаева // Вестник Мичуринского государственного аграрного университета. 2020. № 3(62). С. 52-55.
- 6. Краснова Е.А. Влияние способов основной обработки почвы на засоренность посевов сои в Западной Сибири / Е.А. Краснова, В.В. Рзаева // Аграрный вестник Урала. 2019. № 5(184). С. 4-8. DOI: 10.32417/article_5d5151b13c3e81.50736248.
- 7. Краснова Е.А. Влияние агротехнических приемов на продуктивность сои в северной лесостепи Тюменской области: дис. ... канд. с-х наук / Краснова Елена Александровна, 2021. 201 с.
- 8. Осипов А.И. Биологический круговорот азота атмосферы / А.И. Осипов // Известия Санкт-Петербургского государственного аграрного университета. 2016. N 42. С. 97-103.

- 9. Рзаева В.В. Засоренность посевов гороха и нута в зависимости от способов основной обработки почвы в условиях северной лесостепи Тюменской области / В.В. Рзаева, Т.С. Киселева // Вестник Мичуринского государственного аграрного университета. 2023. № 1(72). С. 38-42.
- 10. Рзаева В.В. Возделывание сельскохозяйственных культур в Тюменской области / В.В. Рзаева // Вестник КрасГАУ. 2021. № 3(168). С. 3-8. DOI: 10.36718/1819-4036-2021-3-3-8.
- 11. Рзаева В.В. Влияние основной обработки на свойства почвы при возделывании яровой пшеницы / В.В. Рзаева // Вестник Мичуринского государственного аграрного университета. 2021. № 2(65). С. 33-37.
- 12. Уляшев В.Л. Засоренность посевов и урожайность кормовых бобов по приемам основной обработки почвы / В.Л. Уляшев, В.В. Рзаева // Аграрный вестник Урала. 2019. № 4(183). С. 35-39. DOI: 13.32417/article_5cf9523399bb66.62010636.
 - 13. Baraev A.I. Selected Works in 3 Volumes / A.I. Baraev. Almaty: Fylym, 2008. Vol. 3. 1972-1984. 312 p.
- 14. Rzaeva V. Productivity of Crop Rotation by the Main Tillage in the Tyumen Region / V. Rzaeva // IOP Conference Series: Earth and Environmental Science, Krasnodar, November 18-20, 2020. Krasnoyarsk: IOP Publishing Ltd, 2021. Vol. 677. P. 52079. DOI: 10.1088/1755-1315/677/5/052079.
- 15. Биокомпозит-Деструкт // Щелково Агрохим. URL: https://betaren.ru/catalog/spetsialnye-udobreniya/mikrobiologicheskie-preparaty/biokompozit-destrukt/ (дата обращения: 16.10.2023)

Список литературы на английском языке / References in English

- 1. Abdriisov D.N. Formirovanie zasorennosti posevov jarovoj pshenicy, vozdelyvaemoj po param v Severo-Kazahstanskoj oblasti [Formation of Weediness of Spring Wheat Crops Cultivated under Fallow in North-Kazakhstan Oblast] / D.N. Abdriisov, V.V. Rzaeva // Vestnik Michurinskogo gosudarstvennogo agrarnogo universiteta [Bulletin of Michurinsk State Agrarian University]. 2023. № 1(72). P. 53-56. [in Russian]
- 2. Dospehov B.A. Metodika opytnogo dela [Methodology of the Pilot Case] / B.A. Dospehov. M.: Agropromizdat, 1985. 351 p. [in Russian]
- 3. Kiseleva T.S. Zapasy dostupnoj vlagi pri vozdelyvanii nuta v severnoj lesostepi Tjumenskoj oblasti / T.S. Kiseleva, V.V. Rzaeva [Available Moisture Reserves in Chickpea Cultivation in the Northern Forest-Steppe of Tyumen Oblast] // Agrarnyj vestnik Urala [Ural Agrarian Bulletin]. 2019. № 9(188). P. 2-7. DOI: 10.32417/article_5dadfe3aeaba53.15283418. [in Russian]
- 4. Kiseleva T.S. Vlijanie osnovnoj obrabotki pochvy na produktivnost' zernobobovyh kul'tur v severnoj lesostepi Zapadnoj Sibiri [Influence of Basic Tillage on the Productivity of Leguminous Crops in the Northern Forest-Steppe of Western Siberia] / T.S. Kiseleva, V.V. Rzaeva. Tyumen: Titul, 2023. 163 p. [in Russian]
- 5. Krasnova E.A. Urozhajnost' soi v zavisimosti ot predshestvennika i sposoba obrabotki pochvy v severnoj lesostepi Tjumenskoj oblasti [Soybean Yields Depending on Predecessor and Tillage Method in the Northern Forest-Steppe of Tyumen Oblast] / E.A. Krasnova, V.V. Rzaeva // Vestnik Michurinskogo gosudarstvennogo agrarnogo universiteta [Bulletin of Michurinsk State Agrarian University]. 2020. № 3(62). P. 52-55. [in Russian]
- 6. Krasnova E.A. Vlijanie sposobov osnovnoj obrabotki pochvy na zasorennost' posevov soi v Zapadnoj Sibiri [Influence of Main Tillage Methods on Weediness of Soybean Crops in Western Siberia] / E.A. Krasnova, V.V. Rzaeva // Agrarnyj vestnik Urala [Ural Agrarian Bulletin]. 2019. № 5(184). P. 4-8. DOI: 10.32417/article_5d5151b13c3e81.50736248. [in Russian]
- 7. Krasnova E.A. Vlijanie agrotehnicheskih priemov na produktivnost' soi v severnoj lesostepi Tjumenskoj oblasti [Influence of Agronomic Practices on Soybean Productivity in the Northern Forest-Steppe of Tyumen Oblast]: dis. ... PhD in Agricultural Sciences / Krasnova Elena Aleksandrovna, 2021. 201 p. [in Russian]
- 8. Osipov A.I. Biologicheskij krugovorot azota atmosfery [Biological Cycle of Atmospheric Nitrogen] / A.I. Osipov // Izvestija Sankt-Peterburgskogo gosudarstvennogo agrarnogo universiteta [Proceedings of the St. Petersburg State Agrarian University]. 2016. № 42. P. 97-103. [in Russian]
- 9. Rzaeva V.V. Zasorennost' posevov goroha i nuta v zavisimosti ot sposobov osnovnoj obrabotki pochvy v uslovijah severnoj lesostepi Tjumenskoj oblasti [Weediness of Pea and Chickpea Crops Depending on Main tillage Methods in the Northern Forest-Steppe of Tyumen Oblast] / V.V. Rzaeva, T.S. Kiseleva // Vestnik Michurinskogo gosudarstvennogo agrarnogo universiteta [Bulletin of Michurinsk State Agrarian University]. 2023. № 1(72). P. 38-42. [in Russian]
- 10. Rzaeva V.V. Vozdelyvanie sel'skohozjajstvennyh kul'tur v Tjumenskoj oblasti [Cultivation of Agricultural Crops in Tyumen Oblast] / V.V. Rzaeva // Vestnik KrasGAU [Bulletin of KrasGAU]. 2021. № 3(168). P. 3-8. DOI: 10.36718/1819-4036-2021-3-3-8. [in Russian]
- 11. Rzaeva V.V. Vlijanie osnovnoj obrabotki na svojstva pochvy pri vozdelyvanii jarovoj pshenicy [Influence of Main Tillage on Soil Properties in Spring Wheat Cultivation] / V.V. Rzaeva // Vestnik Michurinskogo gosudarstvennogo agrarnogo universiteta [Bulletin of Michurinsk State Agrarian University]. 2021. № 2(65). P. 33-37. [in Russian]
- 12. Uljashev V.L. Zasorennost' posevov i urozhajnost' kormovyh bobov po priemam osnovnoj obrabotki pochvy [Crop Infestation and Forage Bean Yield by Main Tillage Techniques] / V.L. Uljashev, V.V. Rzaeva // Agrarnyj vestnik Urala [Ural Agrarian Bulletin]. 2019. $N_{\text{\tiny 2}}$ 4(183). P. 35-39. DOI: 13.32417/article_5cf9523399bb66.62010636. [in Russian]
 - 13. Baraev A.I. Selected Works in 3 Volumes / A.I. Baraev. Almaty: Fylym, 2008. Vol. 3. 1972-1984. 312 p.
- 14. Rzaeva V. Productivity of Crop Rotation by the Main Tillage in the Tyumen Region / V. Rzaeva // IOP Conference Series: Earth and Environmental Science, Krasnodar, November 18-20, 2020. Krasnoyarsk: IOP Publishing Ltd, 2021. Vol. 677. P. 52079. DOI: 10.1088/1755-1315/677/5/052079.

15. Biokompozit-Destrukt [Biocomposite-Destruct] // Shhelkovo Agrohim. — URL: https://betaren.ru/catalog/spetsialnye-udobreniya/mikrobiologicheskie-preparaty/biokompozit-destrukt/ (accessed: 16.10.2023) [in Russian]