АГРОХИМИЯ, АГРОПОЧВОВЕДЕНИЕ, ЗАЩИТА И КАРАНТИН PACTEHИЙ/AGROCHEMISTRY, AGROSOIL SCIENCE, PLANT PROTECTION AND QUARANTINE

DOI: https://doi.org/10.60797/JAE.2025.63.10

ВЛИЯНИЕ РАЗЛИЧНЫХ ТИПОВ ЗЕМЛЕПОЛЬЗОВАНИЯ НА ПРОСТРАНСТВЕННОЕ ВАРЬИРОВАНИЕ ОБМЕННОЙ КИСЛОТНОСТИ И СОДЕРЖАНИЯ ОРГАНИЧЕСКОГО УГЛЕРОДА В СРЕДНЕТАЕЖНОЙ ПОДЗОНЕ КАРЕЛИИ

Научная статья

Сидорова В.А.1, *

¹ORCID: 0000-0003-4474-4450;

¹ Карельский научный центр Российской академии наук, Петрозаводск, Российская Федерация

* Корреспондирующий автор (val.sidorova[at]gmail.com)

Аннотация

В работе представлена оценка пространственного варьирования обменной кислотности и содержания органического углерода легкосуглинистых подзолистых почв в среднетаежной подзоне Карелии Исследования проводились с помощью различных статистических и геостатистических методов. Было установлено, что наименьшему варьированию на изучаемых участках подвержена обменная (коэффициент вариации около 5%). Однако, обработка почвы и внесение удобрений привели к значимому снижению уровня кислотности. Значения рН_{ксі} на поле варьируют в пределах 4,42–5,54 и находятся в группе от среднекислой до слабокислой. На участке под лесом почвы сильнокислые: pH_{KCI} <4,50, а среднее значение на 0,9 меньше, чем на культивируемом участке. Уровень варьирования содержания органического углерода определяется как средний. На участке под лесом увеличиваются размах значений и коэффициент вариации (с 22,38 до 28,04%), а среднее значение содержания органического углерода увеличивается почти в 2 раза — с 1,91 до 3,60%. В результате сельскохозяйственного использования меняется пространственное распределение почвенных свойств. Повышение степени окультуренности участка ведет к уменьшению расстояний, на которых наблюдается пространственная скоррелированность, т.е. к изменению масштаба неоднородности. Распределение кислотности на 30% определяется антропогенным влиянием, а распределение органического углерода в поверхностных горизонтах определяется в первую очередь рельефом участка. На основании полученных данных с помощью метода кригинга были построены картограммы распределения уровня кислотности и содержания органического углерода на исследуемых участках.

Ключевые слова: пространственная неоднородность, дерново-подзолистые почвы, геостатистика.

THE INFLUENCE OF DIFFERENT TYPES OF LAND USE ON SPATIAL VARIATION IN EXCHANGEABLE ACIDITY AND ORGANIC CARBON CONTENT IN THE MIDDLE TAIGA SUBZONE OF KARELIA

Research article

Sidorova V.A.1, *

¹ORCID: 0000-0003-4474-4450;

¹Karelian Research Centre Russian Academy of Sciences, Petrozavodsk, Russian Federation

* Corresponding author (val.sidorova[at]gmail.com)

Abstract

The work presents an evaluation of spatial variation in exchangeable acidity and organic carbon content of light loamy podzolic soils in the middle taiga subzone of Karelia. The research was conducted using various statistical and geostatistical methods. It was found that exchangeable acidity was the least variable parameter in the studied areas (coefficient of variation about 5%). However, soil cultivation and fertilization led to a significant decrease in acidity. The pH_{KCI} values in the field vary between 4.42 and 5.54 and are in the medium-acid to slightly acidic range. In the forest area, the soils are highly acidic: pH_{KCI}<4.50, and the average value is 0.9 lower than in the cultivated area. The level of variation in organic carbon content is determined as average. In the area under the forest, the range of values and the coefficient of variation increase (from 22.38 to 28.04%), and the average organic carbon content increases almost twofold — from 1.91 to 3.60%. Agricultural use changes the spatial distribution of soil properties. An increase in the degree of cultivation of the site leads to a decrease in the distances at which spatial correlation is observed, i.e., to a change in the scale of heterogeneity. The distribution of acidity is 30% determined by anthropogenic influence, while the distribution of organic carbon in surface horizons is primarily determined by the relief of the site. Based on the obtained data, cartograms of the distribution of acidity levels and organic carbon content in the studied areas were constructed using the Kriging method.

Keywords: spatial heterogeneity, sod-podzolic soils, geostatistics.

Введение

Своевременная диагностика изменения почвенного покрова и, в частности, снижения почвенного плодородия, является одной из актуальнейших задач для почвенно-охранной деятельности и рационального природопользования. Знание неоднородности почвенных свойств позволяет использовать изученные признаки их состава и свойств при мониторинге состояния почв, обосновании прогнозов их поведения при изменении условий функционирования. В частности, в связи с развитием адаптивно-ландшафтного земледелия оценка варьирования показателей почвенных свойств, способствует принятию оптимальных решений при реализации стратегии точного земледелия [1], [2].

Пространственная неоднородность почв и почвенных свойств возникает в ходе действия сложных процессов, работающих в течение длительных периодов времени на различных иерархических уровнях в зависимости от конкретных условий развития почв. Пространственное варьирование признаков почвы определяется целым рядом факторов, часть из которых могут иметь случайный характер, другие — регулярность в пространстве. Соответственно пространственная неоднородность почвы имеет двойственную природу. В ней можно выделить регулярные, закономерные составляющие и случайные компоненты [3], [4], [5]. У целинных земель главными будут природные факторы: комплексность почвенного покрова и ландшафтно-экологические условия. При сельскохозяйственном освоении почв происходит ряд изменений, касающихся морфологического строения, химических свойств [6], [7].

Изменение варьирования различных показателей при окультуривании земель происходит сложным образом. С одной стороны, при сельскохозяйственном использовании в почве формируется пахотный горизонт, который нивелирует генетические свойства почв и почвообразующих пород в пределах поля [8]. Также на вовлеченных и освоенных в пашню залежах пространственное варьирование свойств почв уменьшается за счет снижения «пестрополья», куртинистости напочвенного травянистого покрова [9]. С другой стороны, неоднородность интенсивно используемых пахотных почв во многом может быть связана с низкой равномерностью внесения удобрений [10].

Таким образом, решающим фактором, обусловившим неоднородность в содержании элементов питания в пахотном слое окультуренных почв, является не столько различие в видах почв, сколько характер производственной деятельности человека — господствовавшая система земледелия и система удобрения. Цель данной работы — изучение влияния различных типов землепользования на пространственное варьирование актуальной кислотности и содержания органического углерода в дерново-подзолистых почвах.

Объекты и методы

Исследования проводились в окрестностях г. Петрозаводска на территории агробиологической станции Карельского научного центра. Здесь относительно компактно располагаются сельхозугодья, активно использующиеся в настоящее время (пашни, сенокос), а также постагрогенные фитоценозы (лесные сообщества различного возраста).

Рельеф района исследования представляет собой моренную холмистую равнину. Имеется пологий склон к реке в направлении восток-запад.

Наибольшую территорию станции занимают подзолистые, суглинистые и глинистые почвы на суглинистой валунной морене, и глее-подзолистые суглинистые почвы. Также значительная часть земель приходится на дерновые оподзоленные почвы на валунной морене.

Исследования проводились на двух участках. Первый — поле площадью 1,5 га. Северная часть участка представляет собой залежь. Эта часть не использовалась на протяжении нескольких десятилетий, но ежегодно скашивается. Остальная часть поля занята однолетними культурами — картофель, горох, овес. Второй участок — средневозрастной лес площадью около 1,2 га, представляющий собой участок лесовозобновления (посадки карельской березы Betula pendula var. carelica возрастом 50 лет) на бывших сельскохозяйственных угодьях.

При сельскохозяйственном освоении в наибольшей степени изменяются основные характеристики верхнего пахотного горизонта почвы. На культивируемом участке пахотный горизонт был представлен однородным слоем почвы толщиной около 20 см. Известно, что этот горизонт сохраняется в течение длительного времени после прекращения сельскохозяйственной деятельности. На участке лесовозобновления мощность старопахотного горизонта варьировала от 16 до 21 см. Для анализа образцы массой 200–300 г отбирались из прикопок с глубины 10–15 см, что соответствует средней части пахотного (старопахотного) горизонта и позволяет избежать влияния «краевого» эффекта - дернины и подпахотных горизонтов.

Отбор образцов производился по случайно-регулярной сетке с шагом 10–15 м. Всего было отобрано 104 образца на поле и 86 — на участке под лесом. В высушенных и просеянных через сито 2 мм почвенных образцах определяли обменную кислотность (рН_{ксі}) потенциометрически. При подготовке образцов для определения содержания углерода из высушенных образцов выбирались все корешки, затем образцы растирали в ступке и просеивали через сито 0,25 мм. Содержание общего органического углерода определяли в навеске массой 50 мг методом высокотемпературного каталитического сжигания на анализаторе ТОС-L CPN «Shimadzu». Исследованные почвы не содержат карбонаты, поэтому содержание органического углерода принято равным содержанию общего углерода.

Вариабельность почв исследовалась с помощью различных статистических и геостатистических методов. Для оценки закономерностей пространственной вариабельности изучаемых почвенных свойств использовался метод вариографии [5], [11]. Были построены графики зависимости полудисперсии свойств от расстояния между точками опробования и подобраны модели, описывающие пространственную структуру исследуемых свойств [12], [13]. Полудисперсия характеризует степень различия данных в зависимости от расстояний между ними.

Полудисперсия рассчитывалась по формуле:

$$Y(h) = 1/(2N(h))\Sigma[z(x_i) - z(x_i + h)]^2$$
(1)

где Y(h) — экспериментальное значение полудисперсии, $z(x_i)$ и $z(x_i+h)$ - результаты измерений в точках x_i и x_i+h , а N(h) — количество пар точек, удаленных друг от друга на расстояние h.

На основании полученных данных строились «вариограммы» — графики зависимости полудисперсии Y(h) от величины смещения h (расстояния между точками, где этот показатель был измерен).

Расчет значений семивариограмм проводился на расстояниях до 100 м с шагом 10 м. Семивариограммы рассчитывались как для исходных данных, так и для регрессионных остатков. Для построения картограмм использовался обычный и регрессионный кригинг. В случае регрессионного кригинга сначала, используя географические координаты точек, с помощью регрессионных методов строилась линейная или квадратическая трендовая поверхность, а затем для остатков проводился геостатистический анализ [14]. Для расчета и построения

семивариограмм нами использовался пакет программ Variowin, а для построения картограмм пространственного распределения по предсказанным значениям — пакет SURFER Version 11.6 software.

Результаты и обсуждение

Все полученные результаты были статистически обработаны (табл. 1).

Таблица 1 - Статистические характеристики свойств поверхностных (0–20 см) горизонтов почв DOI: https://doi.org/10.60797/JAE.2025.63.10.1

Статистический	pН	I _{KCI}	С, %		
параметр	поле	лес	поле	лес	
Минимум	4,42	3,40	0,96	2,13	
Максимум	5,54	4,41	3,07	5,91	
Размах	1,12	1,01	2,11	3,78	
Среднее	4,94	4,03	1,91	3,60	
Дисперсия	0,05	0,05	0,18	1,02	
Ст. откл.	0,23	0,22	0,43	1,01	
Коэф. вар., %	4,58	5,37	22,38	28,04	
эксцесс	-0,19	0,08	0,10	-0,02	
асимметрия	0,20	-0,68	0,19	0,81	

Значения р H_{KCI} на поле варьируют в пределах 4,42-5,54 и находятся в группе средне- и слабокислой. На участке под лесом почвы сильнокислые: максимальное значение р H_{KCI} не превышает 4,50. Однако участки близки по характеристикам варьирования. Размах варьирования и коэффициент вариации практически не изменились. Коэффициент вариации на обоих участках около 5%, что характеризуется как низкий. В работе [2] также отмечено, что обменная кислотность относится к числу свойств со слабой вариабельностью.

Участок под лесом характеризуется более высоким содержанием органического углерода. При этом размах значений увеличивается в 1,8 раза, а коэффициент вариации — с 22 до 28%. Уровень варьирования определяется как средний. Достаточно высокий положительный коэффициент асимметрии указывает на наличие большого числа точек с повышенным содержанием органического углерода.

Анализ полученных данных позволил отнести исследованные выборки к нормальному распределению. Сравнительный анализ двух выборок выявил достоверные отличия содержания органического углерода и кислотности в почве двух участков. Так, pH_{KCI} в почве на поле было в среднем достоверно ($P_{0,95}$) на 0,9 выше, чем в лесу, среднее содержание органического углерода достоверно ниже на 1,7 % ($P_{0,95}$).

Похожие закономерности (снижение содержания органического углерода и уровня кислотности при антропогенном воздействии) отмечают многие исследователи. Снижение уровня кислотности может быть вызвано активным использованием удобрений, содержащих известь [15], [16].

В случае с содержанием органического углерода таких причин может быть несколько. Так, подобные изменения могут быть связаны с тем, что на культивируемых почвах происходит перемешивание с нижележащими слоями при обработке почв. На исследуемых участках средняя мощность пахотного (старопахотного) горизонта составляла около 20 см, что характерно для вспашки под многолетние травы. Однако позднее, часть участка была распахана под однолетние культуры, в том числе и картофель, что требует более глубокой вспашки. В результате при распашке в пахотный горизонт был вовлечен материал подпахотных горизонтов, в том числе и подзолистого, отличающегося пониженным содержанием углерода.

Кроме того, лесовозобновление на бывших сельскохозяйственных землях предполагает накопление почвенного углерода: формирующаяся лесная подстилка и опад древостоя ускоряют процессы аккумуляции органического вещества [9], [15], [17]. В то же время на участке, подверженном антропогенному воздействию, содержание органического углерода в пахотном горизонте во многом определятся особенностями выноса углерода с урожаем сельскохозяйственных культур и снижением поступления в почву растительных остатков на сенокосных угодьях.

Регрессионный анализ показал, что для всех свойств выявлены тренды. Полученные трендовые поверхности с очень высокой вероятностью (99%) объясняли изменения свойств в зависимости от положения (координаты) точек пробоотбора. Множественный коэффициент детерминации составил при этом до 12% для содержания углерода и 29,9% для р H_{KCl} на поле.

Трендовая поверхности для р H_{KCI} представлена на рис. 1. Как видно из рисунка, основное направление снижения уровня кислотности — с юго-запада на север, что соответствует направлению изменения степени антропогенного воздействия — от пашни к сенокосу.

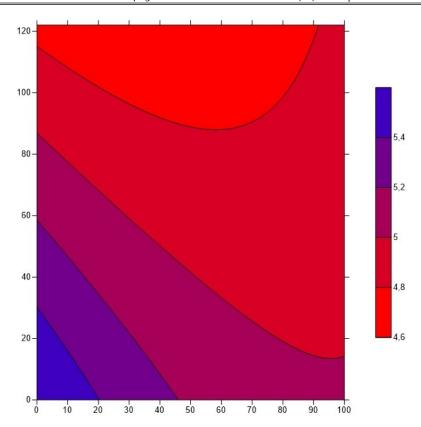


Рисунок 1 - Поверхность тренда второго порядка для pH_{KCl} DOI: https://doi.org/10.60797/JAE.2025.63.10.2

Примечание: участок на поле

Для исходных данных был проведен анализ вариограмм. Параметры моделей вариограмм представлены в таблице 2, а сами вариограммы — на рис. 2.

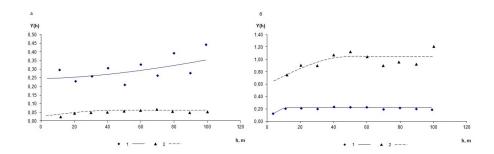


Рисунок 2 - Экспериментальные вариограммы для р $H_{\text{KCI}}(a)$ и содержания органического углерода (б) с подобранными теоретическими моделями:

mочки — рассчитанные значения; nинии — подобранная модель; 1 — участок на поле; 2 — участок под лесом DOI: https://doi.org/10.60797/JAE.2025.63.10.3

Таблица 2 - Параметры моделей вариограмм

DOI: https://doi.org/10.60797/JAE.2025.63.10.4

Параметр	участок	полудисперс ия	модель	наггет, С	порог, (C ₀ +C)	ранг (a), m	пространств енная зависимость С ₀ /(C ₀ +C), %
pH_{KCl}	поле	0,05	Степенная	0,25	_	-	-
	лес	0,05	Сферическа я	0,025	0,063	45	39,68

Параметр	участок	полудисперс ия	модель	наггет, С	порог, (C ₀ +C)	ранг (а), т	пространств енная зависимость C ₀ /(C ₀ +C), %
С	поле	0,18	Сферическа я	0,054	0,219	13	24,66
	лес	1,02	Сферическа я	0,60	1,05	50	57,14

Построенные для рН_{ксі} на участке под полем вариограммы подтвердили наличие тренда в данных в виде неограниченного в пределах участка возрастания значений полудисперсии (рис. 2a). На участке под лесом уровень неоднородности имеет размеры несколько десятков метров, а степень пространственной зависимости средняя. Аналогичные результаты получены в работе [18]. Отмечено, что под лесом преобладало варьирование на коротких расстояниях (несколько метров). Автор связывает это с локальным разнообразием растительности в лесу по сравнению с однообразным растительным покровом на сельхозугодьях.

Для содержания органического углерода вариограмма лучше всего описывалась сферической моделью с рангом 13 и 50 м на участках на поле и под лесом соответственно. Пространственная корреляция определяется как сильная ближе к средней или средняя. Таким образом, пространственное распределение органического углерода в пределах поля носит скорее случайный характер. В работе [16] также отмечено, вариограммы для содержания органического углерода на культивируемых участках показывают меньшее значение наггета и ранга, чем под естественной растительностью. Таким образом, при сельскохозяйственном использовании сглаживается неоднородность свойств на небольших расстояниях.

Так как для всех свойств выявлена хорошо выраженная пространственная структура, на данных участках возможна интерполяция результатов и построение картограмм почвенных свойств с помощью геостатистических методов. Например, рекомендуется воспользоваться обычным кригингом, а в случае наличия тренда — регрессионным кригингом. На рис. З представлены картограммы распределения уровня кислотности и содержания органического углерода, полученные с помощью кригинга.

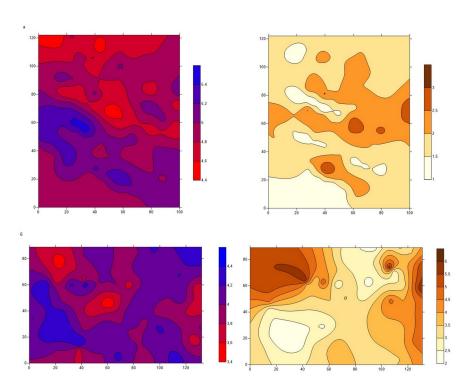


Рисунок 3 - Картограммы р H_{KCl} (*слева*) и содержания органического углерода, % (*справа*) поверхностных (0–20 см) горизонтов почв на участках на поле (*a*) и под лесом (*б*), полученные с помощью кригинга DOI: https://doi.org/10.60797/JAE.2025.63.10.5

С помощью полученных картограмм можно выделить на поле участки с повышенным и низким значением агрохимически важных свойств, а затем, в зависимости от локализации и размеров этих зон, принимать решение о дифференцированном внесении удобрений. В частности, из рисунка За видно, что зона с пониженными значениями pH_{KCI} сосредоточена преимущественно в северной части поля, под сенокосом. Следовательно, при возвращении этих земель в пахотные, эта часть поля в первую очередь нуждается в известковании.

На участке под лесом отмечены повышенные значения содержания органического углерода в северо-западной части (рис. 36). Этот участок соответствует началу резкого понижения к реке и в верхнем горизонте появляются признаки оторфовывания.

Заключение

Антропогенные воздействия существенно влияют на пространственное распределение почвенных свойств. Обработка почвы и внесение удобрений приводят к значимому снижению уровня кислотности и содержания органического углерода. В результате исследования пространственного варьирования агрохимических и физико-химических свойств почв, находящихся под воздействием антропогенного пресса, установлено, что распределение кислотности на поле на 30% определяется антропогенным влиянием: среднекислые почвы под сенокосом и слабокислые — на пашне. На участке под лесом преобладает варьирование на коротких расстояниях. Распределение органического углерода в поверхностных горизонтах определяется в первую очередь рельефом участка. При сельскохозяйственном использовании сглаживается неоднородность распределения углерода.

Благодарности

Работа выполнена в рамках государственного задания FMEN 2022-0014.

Конфликт интересов

Не указан.

Рецензия

Все статьи проходят рецензирование. Но рецензент или автор статьи предпочли не публиковать рецензию к этой статье в открытом доступе. Рецензия может быть предоставлена компетентным органам по запросу.

Acknowledgement

The work was carried out as part of state assignment FMEN 2022-0014.

Conflict of Interest

None declared.

Review

All articles are peer-reviewed. But the reviewer or the author of the article chose not to publish a review of this article in the public domain. The review can be provided to the competent authorities upon request.

Список литературы / References

- 1. Афанасьев Р.А. Агрохимическое обеспечение точного земледелия / Р.А. Афанасьев // Проблемы агрохимии и экологии. 2008. № 3. С. 46–52.
- 2. Самсонова В.П. Пространственная изменчивость почвенных свойств: На примере дерново-подзолистых почв / В.П. Самсонова. Москва: Издательство ЛКИ, 2008. 160 с.
- 3. Басевич В.Ф. Неоднородность подзолистых почв в биогеоценозах южной тайги: автореф. дис. ... д-ра биол. наук / Басевич Виктор Францевич. Москва, 2011. 51 с.
- 4. Медведев В.В. Неоднородность агрохимических показателей почвы в пространстве и во времени / В.В. Медведев, А.И. Мельник // Агрохимия. 2010. № 1. С. 20—26.
- 5. Hengl T. A practical guide to geostatistical mapping / T. Hengl. Amsterdam: University of Amsterdam, 2009. 271 p.
- 6. Литвинович А.В. Пространственная неоднородность агрохимических показателей пахотных дерновоподзолистых почв / А.В. Литвинович // Агрохимия. 2007. № 5. С. 89–94.
- 7. Телеснина В.М. Особенности морфологии и химических свойств постагрогенных почв южной тайги на легких отложениях (Костромская область) / В.М. Телеснина, И.Е. Ваганов, А.А. Карлсен [и др.] // Почвоведение. 2016. № 1. С. 115—129.
- 8. Наквасина Е.Н. Неоднородность почвенно-растительного покрова при постагрогенной восстановительной сукцессии в средней подзоне тайги / Е.Н. Наквасина, Т.А. Паринова, А.Г. Волкова [и др.] // Экология. 2023. № 1. С. 22–34.
- 9. Сорокина О.А. Трансформация плодородия почв залежей лесостепной зоны при различном направлении их использования / О.А. Сорокина // Вестник КрасГАУ. 2024. № 5. С. 93–100.
- 10. Иванов А.И. Оценка параметров пространственной неоднородности показателей плодородия дерновоподзолистых почв / А.И. Иванов, А.А, Конашенков, Ю.В. Хомяков [и др.] // Агрохимия. 2014. № 2. С. 39–49.
- 11. Дмитриев Е.А. Математическая статистика в почвоведении / Е.А. Дмитриев. Москва: Изд-во МГУ, 1995. 318 с.
- 12. Webster R. Sample adequately to estimate variograms of soil properties / R. Webster, M.A. Oliver // J. Soil Sci. $1992. Vol. 43 N_0 1. P. 177-192.$
- 13. Cambardella C.A. Field-scale variability of soil properties in Central Iowa soils / C.A. Cambardella, T.B. Moorman, T.B. Parkin [et al.] // Soil Sci. Soc. America J. 1994. Vol. 58. P. 1501–1511.
- 14. Webster R. Optimal interpolation and isarithmic mapping of soil properties. III: Changing drift and universal kriging / R. Webster, T.M. Burgess // J. Soil Sci. 1980. Vol. 31. \mathbb{N}_2 3. P. 505–524.
- 15. Парамонов С.Г. К вопросу об изменении верхних горизонтов почвы в ходе постагрогенной сукцессии в условиях Псковской области / С.Г. Парамонов, А.В. Грязькин, А.П. Смирнов [и др.] // Вестник Бурятской государственной сельскохозяйственной академии имени В.Р. Филиппова. 2025. № 1 (78). С. 105—112.
- 16. Paz-González A. The effect of cultivation on the spatial variability of selected properties of an umbric horizon / A. Paz-González, S.R. Vieira, M.T. Taboada Castro // Geoderma. 2000. Vol. 97. P. 273–292.
- 17. Akujärvi A. Carbon budget of Finnish croplands Effects of land use change from natural forest to cropland / A. Akujärvi, J. Heikkinen, T. Palosuo [et al.] // Geoderma Regional 2014. Vol. 2–3. P. 1–8.

18. VanMeirvenne M. Is the soil variability within the small fields of Flanders structured enough to allow precision agriculture? / M. VanMeirvenne // Precis. Agric. — 2003. — Vol. 4. — P. 193–201.

Список литературы на английском языке / References in English

- 1. Afanasev R.A. Agrokhimicheskoe obespechenie tochnogo zemledeliya [Agrochemical support for precision farming] / R.A. Afanasev // Problemi agrokhimii i ekologii [Problems of Agrochemistry and Ecology]. 2008. № 3. P. 46–52. [in Russian]
- 2. Samsonova V.P. Prostranstvennaya izmenchivost pochvennikh svoistv: Na primere dernovo-podzolistikh pochv [Spatial variability of soil properties: On the example of sod-podzolic soils] / V.P. Samsonova. Moscow: LKI Publishing House, 2008. 160 p. [in Russian]
- 3. Basevich V.F. Neodnorodnost podzolistikh pochv v biogeotsenozakh yuzhnoi taigi [Heterogeneity of podzolic soils in southern taiga biogeocenoses]: abst. diss. ... PhD in Biology / Basevich Viktor Frantsevich. Moscow, 2011. 51 p. [in Russian]
- 4. Medvedev V.V. Neodnorodnost agrokhimicheskikh pokazatelei pochvi v prostranstve i vo vremeni [Heterogeneity of agrochemical indicators of soil in space and time] / V.V. Medvedev, A.I. Melnik // Agrokhimiya [Agrochemistry]. 2010. N_0 1. P. 20–26. [in Russian]
- 5. Hengl T. A practical guide to geostatistical mapping / T. Hengl. Amsterdam: University of Amsterdam, 2009. 271 p.
- 6. Litvinovich A.V. Prostranstvennaya neodnorodnost agrokhimicheskikh pokazatelei pakhotnikh dernovo-podzolistikh pochv [Spatial heterogeneity of agrochemical indicators of arable sod-podzolic soils] / A.V. Litvinovich // Agrokhimiya [Agrochemistry]. 2007. N_0 5. P. 89–94. [in Russian]
- 7. Telesnina V.M. Osobennosti morfologii i khimicheskikh svoistv postagrogennikh pochv yuzhnoi taigi na legkikh otlozheniyakh (Kostromskaya oblast) [Traits of the morphology and chemical properties of post-agricultural soils of the southern taiga on light sediments (Kostroma Oblast)] / V.M. Telesnina, I.E. Vaganov, A.A. Karlsen [et al.] // Pochvovedenie [Soil Studies]. 2016. N₂ 1. P. 115–129. [in Russian]
- 8. Nakvasina Ye.N. Neodnorodnost pochvenno-rastitelnogo pokrova pri postagrogennoi vosstanovitelnoi suktsessii v srednei podzone taigi [Heterogeneity of soil and vegetation cover during post-agricultural restoration succession in the middle taiga zone] / Ye.N. Nakvasina, T.A. Parinova, A.G. Volkova [et al.] // Ekologiya [Ecology]. 2023. $N_{\rm P}$ 1. P. 22–34. [in Russian]
- 9. Sorokina O.A. Transformatsiya plodorodiya pochv zalezhei lesostepnoi zoni pri razlichnom napravlenii ikh ispolzovaniya [Transformation of soil fertility in the forest-steppe zone under different land use practices] / O.A. Sorokina // Vestnik KrasGAU [Bulletin of KrasSAU]. 2024. N 5. P 93–100. [in Russian]
- 10. Ivanov A.I. Otsenka parametrov prostranstvennoi neodnorodnosti pokazatelei plodorodiya dernovo-podzolistikh pochv [Evaluation of spatial heterogeneity parameters of fertility indicators of sod-podzolic soils] / A.I. Ivanov, A.A, Konashenkov, Yu.V. Khomyakov [et al.] // Agrokhimiya [Agrochemistry]. 2014. № 2. P. 39–49. [in Russian]
- 11. Dmitriev Ye.A. Matematicheskaya statistika v pochvovedenii [Mathematical statistics in soil science] / Ye.A. Dmitriev. Moscow: MSU Publishing House 1995. 318 p. [in Russian]
- 12. Webster R. Sample adequately to estimate variograms of soil properties / R. Webster, M.A. Oliver // J. Soil Sci. 1992. Vol. 43 № 1. P. 177–192.
- 13. Cambardella C.A. Field-scale variability of soil properties in Central Iowa soils / C.A. Cambardella, T.B. Moorman, T.B. Parkin [et al.] // Soil Sci. Soc. America J. 1994. Vol. 58. P. 1501–1511.
- 14. Webster R. Optimal interpolation and isarithmic mapping of soil properties. III: Changing drift and universal kriging / R. Webster, T.M. Burgess // J. Soil Sci. 1980. Vol. 31. N_0 3. P. 505–524.
- 15. Paramonov S.G. K voprosu ob izmenenii verkhnikh gorizontov pochvi v khode postagrogennoi suktsessii v usloviyakh Pskovskoi oblasti [On the issue of changes in the upper soil horizons during post-agricultural succession in Pskov Oblast] / S.G. Paramonov, A.V. Gryazkin, A.P. Smirnov [et al.] // Vestnik Buryatskoi gosudarstvennoi selskokhozyaistvennoi akademii imeni V.R. Filippova [Bulletin of the V.R. Filippov Buryat State Agricultural Academy]. 2025. № 1 (78). P. 105–112. [in Russian]
- 16. Paz-González A. The effect of cultivation on the spatial variability of selected properties of an umbric horizon / A. Paz-González, S.R. Vieira, M.T. Taboada Castro // Geoderma. 2000. Vol. 97. P. 273–292.
- 17. Akujärvi A. Carbon budget of Finnish croplands Effects of land use change from natural forest to cropland / A. Akujärvi, J. Heikkinen, T. Palosuo [et al.] // Geoderma Regional 2014. Vol. 2–3. P. 1–8.
- 18. VanMeirvenne M. Is the soil variability within the small fields of Flanders structured enough to allow precision agriculture? / M. VanMeirvenne // Precis. Agric. 2003. Vol. 4. P. 193–201.