АГРОХИМИЯ, АГРОПОЧВОВЕДЕНИЕ, ЗАЩИТА И КАРАНТИН PACTEHИЙ/AGROCHEMISTRY, AGROSOIL SCIENCE, PLANT PROTECTION AND QUARANTINE

DOI: https://doi.org/10.60797/JAE.2025.63.8

ОЦЕНКА ЗАГРЯЗНЕНИЯ ПОЧВ И СОСТОЯНИЯ ДРЕВОСТОЕВ СОСНЫ ОБЫКНОВЕННОЙ (PINUS SYLVESTRIS L.) ВДОЛЬ АВТОМОБИЛЬНОЙ ТРАССЫ

Научная статья

Ищук Т.А.^{1,}*, Данилов Д.А.²

¹ORCID: 0000-0003-4665-9516; ²ORCID: 0000-0002-7504-5743;

Аннотация

В данной статье рассматривается процесс проведения экологической оценки состояния зеленых насаждений вдоль автомобильной трассы, обусловленный постоянно усиливающимся антропогенным воздействием, которое, в свою очередь, провоцирует негативные изменения санитарного состояния экосистем. На временных пробных площадях (ВПП) была проведена оценка жизненного состояния 1300 деревьев сосны обыкновенной (*Pinus sylvestris* L.). Изучено содержание нефтепродуктов и бен(а)пирена в почвенных образцах вдоль автотрассы A-121 «Сортавала» и вблизи A3C. В целом результаты выполненной работы показали, что исследованные древостои при наличии умеренного потока выбросов находятся в относительно удовлетворительном состоянии.

Ключевые слова: экологический мониторинг, зеленые насаждения, древостой, сосна обыкновенная, индекс состояния, автотрасса, техногенное загрязнение, бенз(а)пирен.

EVALUATION OF SOIL CONTAMINATION AND THE CONDITION OF SCOTS PINE (PINUS SYLVESTRIS L.) STANDS ALONG A MOTORWAY

Research article

Ishchuk T.A.^{1,*}, Danilov D.A.²

¹ORCID: 0000-0003-4665-9516;

²ORCID: 0000-0002-7504-5743;

^{1, 2} Saint-Petersburg State Forest Technical University, Saint-Petersburg, Russian Federation ² Leningrad Research Agriculture Institute – Branch of Russian Potato Research Centre, Gatchina, Russian Federation

* Corresponding author (rabbit0189[at]mail.ru)

Abstract

The article examines the process of conducting an environmental evaluation of the condition of green plantations along a motorway, caused by the ever-increasing anthropogenic impact, which, in turn, provokes negative changes in the sanitary condition of ecosystems. The vital condition of 1,300 Scots pine trees (*Pinus sylvestris L.*) was assessed at temporary test sites (TTS). The content of petroleum products and ben(a)pyrene in soil samples along the A-121 "Sortavala" motorway and near gas stations was studied. Overall, the results of the work showed that the studied tree stands are in relatively satisfactory condition despite moderate emissions.

Keywords: environmental monitoring, green plantations, tree stand, Scots pine, condition index, motorway, technogenic pollution, benz(a)pyrene.

Введение

Развитие промышленности и транспорта не только облегчает жизнедеятельность человека, но и влечет за собой значительное загрязнение экосистем. Мировой парк автотранспорта огромен — по статистике на каждую семью в среднем приходится 1–2 автомобиля. Использование автотранспорта человеком в большом количестве вызвано его потребностью в мобильности. Во многих крупных городах автотранспорт является одним из самых крупных источников загрязнения — на его долю приходится 50–80% от общего количества выбросов загрязняющих веществ в атмосферу [1], [2]. Одиночный автомобиль, который движется по автотрассе, не в состоянии оказать серьезного влияния на экосистемы и окружающую среду. Но совсем другое дело — это совокупность машин, движущихся в составе транспортных потоков по автомобильным дорогам и перевозящих пассажиров и различные грузы. Влияние автотранспорта на природные экосистемы определяется не только техническими характеристиками автомобилей или дороги, но и скоростью движения, интенсивностью, составом транспортного потока, густотой дорожной сети [3].

Использование практически всех видов транспорта во всех странах возрастает по объему грузоперевозок и по числу перевозимых пассажиров ежегодно. В связи с этим увеличиваются загрязнения воздушного бассейна промышленными выбросами, и лесные биогеоценозы, произрастающие в районах крупных промышленных производств, не успевают нейтрализовывать различные токсичные вещества, что приводит к их постепенной деградации [4], [5]. Транспортно-дорожный комплекс — это мощнейший загрязнитель природной среды. Объем

^{1, 2} Санкт-Петербургский государственный лесотехнический университет имени С. М. Кирова, Санкт-Петербург, Российская Федерация

² Ленинградский научно-исследовательский институт сельского хозяйства «Белогорка» — филиал Федерального исследовательского центра картофеля им. А. Г. Лорха, Гатчина, Российская Федерация

^{*} Корреспондирующий автор (rabbit0189[at]mail.ru)

транспортных выбросов загрязняющих веществ в атмосферу на дорогах общего пользования почти в два раза превышает объем технологических выбросов. Технологические выбросы твёрдых частиц, минеральной пыли и оксидов серы сопоставимы с выбросами этих же веществ транспортными потоками [3]. К транспортным выбросам относятся продукты износа шин, нефтепродукты, бенз(а)пирен, токсичные вещества с отработавшими газами автомобилей, эксплуатационные жидкости и другие.

Пагубное влияние транспорта увеличивается с ростом и плотностью населения в больших городах и других поселениях. Одна из наиболее важных экологических проблем — воздействие транспорта на состояние окружающей растительности. Загрязнение воздуха и почвы выбросами автотранспорта является одним из наиболее опасных факторов воздействия, вызывающим повреждение растений и нарушение экологических функций насаждений [4]. Растения поглощают из воздуха и нейтрализуют в тканях значительное количество вредных компонентов техногенных отходов, способствуя тем самым сохранению газового баланса в атмосфере. Дерево средней величины за 24 ч восстанавливает столько кислорода, сколько необходимо для дыхания трех человек за такой же период времени. За один теплый солнечный день один га леса поглощает из воздуха — 220–280кг углекислого газа и выделяет 180–220 кг кислорода [6]. Помимо уникальной способности зеленых насаждений поглощать двуокись углерода и обогащать атмосферный воздух кислородом, в среднем за вегетационный период они также могут осадить до 40-60 т/га пыли. Клейкие и смолистые (хвоя) деревья удерживают пыль в начале сезона, затем интенсивность поглощения снижается в результате закупоривания устьиц, участвующих в газообмене. Последствия данного воздействия скажутся не только на нашем поколении, но и на будущих. Кроме того, зеленые насаждения снижают эффект акустического загрязнения, шумовой эффект летом на 7-8 дБ, зимой — на 3-4 дБ, растительные экраны вдоль магистралей из деревьев — на 4,5-5,5 дБ, кустарниковые – на 10 дБ, широкие полосы от 200-250 м – на 35-45 дБ, 100 м – на 8 дБ. Кроны деревьев поглощают до 25% звуковой энергии и примерно 75% этой энергии отражают и рассеивают [7]. Поэтому изучение данной проблемы является актуальным, особенно в условиях современного мира, а также дает возможность в будущем проследить динамику ухудшения состояния древостоя.

Для оценки экологического состояния окружающей среды активно применяется экологический мониторинг лесов, который включает в себя совокупность мероприятий, направленных на оценку и прогноз состояния и динамики лесного фонда, а также разработку соответствующих рекомендаций и управленческих решений, необходимых для обеспечения управления окружающей среды и экологической безопасности. В качестве одного из основных методов мониторинговой диагностики используют метод закладки пробных площадей двух типов: постоянные и временные. Постоянные пробные площади (ППП) закладывают с целью многолетнего мониторинга за развитием растительности и происходящими в ней процессами. Временные же площади (ВПП) предназначены для проведения разовых наблюдений и учетных работ. Преимуществом данного метода является то, что в этом случае получают детальное описание насаждения, дающее, в свою очередь, возможность осуществлять дальнейшие наблюдения за состояния насаждения [8], [9].

В последнее время при оценке состояния лесных фитоценозов используется концепция виталитетной структуры древостоя. Распределение деревьев по категориям состояния (виталитета) получило название виталитетного спектра [10]. По отношению к сосновым лесам данная концепция реализована в работе В.Т. Ярмишко с соавторами, выполненной на территории Кольского полуострова [11]. Использование этого понятия и соответствующих методов анализа позволяет определить особенности каждого древостоя и проводить сравнительный анализ их состояния на определенной территории.

Согласно В.Т. Ярмишко, наиболее информативными признаками, по изменению которых можно судить о степени поврежденности хвойных лесов, являются продолжительность жизни хвои, ее размеры, количество в кроне и степень дехромации, текущий прирост главного и боковых побегов, количество сухих ветвей в кроне и состояние верхней части кроны. Сравнительный анализ этих данных показывает различия степени повреждений хвои сосен, растущих на загрязненных и чистых участках [12].

В процессе трансформации нефтяных соединений в почве происходит накопление высокомолекулярных конденсированных ароматических структур с высокой степенью водородной ненасыщенности. Количество их зависит от времени трансформации нефти в почве и степени активности протекания этого процесса в верхнем горизонте, чему способствует свободный доступ кислорода [2].

Главным маркером загрязнения почв полициклическими ароматическими углеводородами, подлежащим обязательному контролю во всем мире, является бенз(а)пирен — канцероген и мутаген 1-го класса опасности. Минимальное содержание бенз(а)пирена в почве, при котором повышается его содержание в растениях, соответствует величинам 0,05—0,1 мг/кг почвы. ПДК бенз(а)пирена в почве составляет 0,02 мг/кг [13]. В среднем нижний предел концентраций нефти и нефтепродуктов в загрязненной почве изменяется от 0,1 до 1,0 г/кг. [2], [14].

Цель данного исследования состояла в сравнительном анализе результатов оценки жизненного состояния средневозрастных и приспевающих сосновых древостоев, формирующихся в условиях антропогенного воздействия.

Объекты и методика исследования

Мониторинговые работы проводились в летний период 2021–2022 гг. В программу исследований входили следующие основные работы: подбор объектов для закладки временных пробных площадей (ВПП), составление общей характеристики насаждений, оценка уровня жизненного состояния деревьев, интегральная оценка состояния насаждений, отбор почвенных образцов с целью анализа на содержание в них нефтепродуктов (НП) и бенз(а)пирена (БП). Источниками загрязнения являлись два объекта: автотрасса А-121 «Сортавала» — автомобильная дорога общего пользования федерального значения Санкт-Петербург — Сортавала и автозаправка «Роснефть», расположенная на 35-ом километре трассы А-121. Строительство дороги началось в 2002 году и первый участок дороги был введен в эксплуатацию в 2010 году. Протяженность трассы составляет 469 км; трасса имеет 4 полосы движения от Санкт-

Петербурга до посёлка Лосево, далее — 2 полосы движения. Автодорога проходит через Всеволожский и Приозерский районы Ленинградской области, загруженность трассы высокая.

Для исследования были подобраны 11 временных пробных площадей (ВПП). Пробные площади 1–5 были расположены на 37-ом километре трассы A-121 «Сортавала» на расстоянии 15, 100, 200, 300 и 400 м от полотна дороги. Пробные площади 6–11 находились на 35-ом километре трассы A-121 на расстоянии 15, 100 и 200 м от АЗС (рис.1). Для описания лесных сообществ на ВПП использовали общепринятые методы [9]. Характеристики исследованных объектов представлены в таблице 1. Источником загрязнения в данных условиях служит не только автотрасса, но и автомобильная заправочная станция «Роснефть».

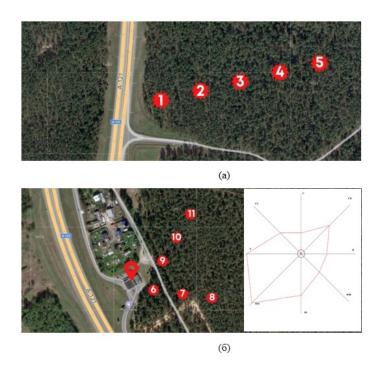


Рисунок 1 - Расположение ВПП 1-5 на 37-ом км (a) и ВПП 6-11 на 35-ом км (δ) трассы A-121 вблизи A3C DOI: https://doi.org/10.60797/JAE.2025.63.8.1

Таблица 1 - Характеристики временных пробных площадей в сосняках брусничных DOI: https://doi.org/10.60797/JAE.2025.63.8.2

№ ВПП	Расстояние от источника загрязнения	Возраст, лет	Средние H/D, m/cm	Класс бонитета	Состав насаждений	Тип леса
		В	ПП у автотрасс	СЫ		
1	15	60	16/18	3	9C1E	Сосняк- брусничник
2	100	60	18/24	2	7С3Б	Сосняк- брусничник
3	200	60	18/23	2	8С2Б	Сосняк- брусничник
4	300	60	20/21	1	8С2Е+Б	Сосняк- брусничник
5	400	70	23/24	1	6C4E	Сосняк- брусничник
			ВПП у АЗС			
6	15	60	24/32	1	10C	Сосняк- брусничник
7	100	60	22/28	1	10C	Сосняк- брусничник
8	200	60	18/23	2	9С1Б	Сосняк- брусничник

№ ВПП	Расстояние от источника загрязнения	Возраст, лет	Средние H/D, m/cm	Класс бонитета	Состав насаждений	Тип леса
9	15	60	23/31	1	10C+E	Сосняк- брусничник
10	100	60	19/21	2	10C	Сосняк- брусничник
11	200	70	24/19	1	10C+E	Сосняк- брусничник

Примечание: Б – берёза, C – сосна, E – ель

На пробных площадях была проведена оценка жизненного состояния 1300 деревьев сосны обыкновенной (*Pinus sylvestris* L.) 1–3 класса Крафта, так как такие деревья подвержены влиянию загрязнений, но не подвергаются угнетению со стороны соседних деревьев. Для диагностики жизненного состояния деревьев и древостоев была применена методика Алексеева В.А. [15].

Основным параметром при общей оценке состояния совокупности модельных деревьев на ВПП был показатель относительного жизненного состояния древостоя (Ln), значения которого получены на основе общепринятых категорий состояния деревьев. В зависимости от величины данного показателя различают следующие категории древостоев по степени повреждения (табл. 2).

Таблица 2 - Категории состояния древостоев по степени повреждения

DOI: https://doi.org/10.60797/JAE.2025.63.8.3

Относительное жизненное состояние, %	Древостой	
100-80	3доровый	
79-50	Ослабленный	
49-20	Сильно ослабленный	
<19	Полностью разрушенное	

Расчет индексов состояния древостоев рассчитывали по формуле:

 $L\dot{n} = (100n1 + 70\dot{n}2 + 40n3 + 5n4)/N$

где Ln — относительное жизненное состояние древостоя, рассчитанное по числу деревьев;

n1, n2, n3, n4 — число здоровых, ослабленных, сильно ослабленных и отмирающих деревьев лесообразователя или лесообразователей на пробной площади (или 1 га);

100, 70, 40, 5 — коэффициенты, выражающие жизненное состояние здоровых, поврежденных, сильно поврежденных и отмирающих деревьев, %;

N — общее число деревьев (включая сухостой) на пробной площади или 1 га.

Отбор проб почв на содержание бенз(а)пирена и нефтепродуктов проводили в соответствии с ГОСТом 17.4.4.02.84-2017 «Охрана природы. Почвы. Методы отбора и подготовки проб для химического, бактериологического и гельминтологического анализа». Стандарт предназначен для контроля общего и локального загрязнения почвы в районах воздействия промышленных, сельскохозяйственных, хозяйственно-бытовых, транспортных источников загрязнения. Отбор проб осуществлялся методом конверта в 5 точках на местности, чтобы при мысленном соединении точек линиями они давали рисунок запечатанного конверта. Из каждой точки отбирали не менее 0,5 кг почвы с глубины 0–20 см. [16].

Определение содержания нефтепродуктов в почве проводили согласно ПНД Ф 16.1:2.2.22-98. Данная методика предназначена для определения массовой доли нефтепродуктов в минеральных, органных, органо-минеральных почвах и донных отложениях методом ИК-спектрометрии на анализаторах нефтепродуктов.

Содержание бенз(а)пирена в почве определяли в соответствии с МУК 4.1.1274-03 (Методы контроля. Химические факторы. Измерение массовой доли бенз(а)пирена в пробах почв, грунтов, донных отложений и твердых отходов методом ВЭЖХ с использованием флуориметрического детектора)

Для дальнейшей статистической обработки использовалось программное обеспечение Microsoft Excel и Statistica 11.

Для выявления фактической степени параллелизма между двумя количественными рядами изучаемых признаков и для оценки тесноты установленной связи с помощью количественно выраженного коэффициента использовался аппарат ранговой корреляции Спирмена. Это непараметрический метод, который используется для статистического изучения связи между явлениями. Коэффициент Спирмена измеряет монотонную связь, что означает: если одна переменная увеличивается, другая переменная также имеет тенденцию к увеличению или уменьшению в определённом направлении. В отличие от коэффициента корреляции Пирсона, который измеряет линейную связь, коэффициент Спирмена подходит для данных, которые могут быть неравномерно распределены или иметь нелинейную связь [17], [18]. Для оценки тесноты связи может использоваться шкала Чеддока: (табл. 3)

Таблица 3 - Шкала Чеддока

DOI: https://doi.org/10.60797/JAE.2025.63.8.4

Абсолютное значение R_{xy}	Теснота (сила) корреляционной связи	
менее 0,3	слабая	
от 0,3 до 0,5	умеренная	
от 0,5 до 0,7	заметная	
от 0,7 до 0,9	высокая	
более 0,9	весьма высокая	

При анализе различий между выборками использовали анализ Краскела-Уоллиса — непараметрический статистический критерий. При вычислении статистики Краскела-Уоллиса (Н) используется сумма рангов каждой группы и рассчитывается значение статистики Н, которое отражает степень различия между группами. Определение значимости полученной статистики проводилось на основе сравнения критических значений из таблиц распределения хи-квадрат, чтобы определить статистическую значимость наблюдаемых различий [19], [20].

Основные результаты и обсуждение

Полученные результаты исследования почвенных образцов позволяют дать оценку характера поверхностного загрязнения на мониторинговых пробных площадях. Почвы и грунты считаются техногеннозагрязненными, если концентрации нефтепродуктов достигают величин, при которых в природных комплексах возникают негативные экологические сдвиги, и они не могут сами компенсировать загрязнение. Наиболее высокие показатели содержания нефтепродуктов зафиксированы на ВПП2 и 6 (166,5 и 104,5 мг/кг соответственно), это участки наиболее приближенные к источникам загрязнения. На расстоянии от дороги и АЗС 100 м и более показатели находятся приблизительно в одном диапазоне значений (табл. 4). Согласно ГОСТ 17.4.1.02-83 «Почвы», все величины содержание нефтепродуктов на исследуемых участках соответствуют допустимому уровню загрязнения [14].

Таблица 4 - Содержание бенз(а)пирена и нефтепродуктов в исследуемых пробах почв DOI: https://doi.org/10.60797/JAE.2025.63.8.5

Место отбора проб	Расстояние от источника загрязнения, м	Бенз(а)пирен (БП), мг/кг	Нефтепродукты (НП), мг/кг
ВПП 1 (авто-дорога)	15	0,333	166,5
ВПП 2 (авто-дорога)	100	0,027	36,9
ВПП 3 (авто-дорога)	200	<0,005	23,1
ВПП 4 (авто-дорога)	300	0,008	43,4
ВПП 6 (АЗС)	15	0,015	104,5
ВПП 7 (АЗС)	100	0,017	51,1
ВПП 8 (АЗС)	200	0,017	30,7
ВПП 9 (АЗС)	15	0,028	41,3
ВПП 10 (АЗС)	100	0,008	54,7
ВПП 11 (АЗС)	200	0,008	46,8

Содержание бенз(а)пирена в почвенных образцах ВПП 1, наиболее близко расположенной к автомобильной дороге, существенно (более, чем в 10 раз) превышает значения ПДК. На расстоянии 100 м от источника загрязнения также сохраняется небольшое превышение допустимого уровня концентрации. В пробах, отобранных вблизи АЗС, содержание бенз(а)пирена находится в пределах нормы, за исключением наиболее близко расположенного (на расстоянии 15 м) участка. (табл. 4)

Анализ виталитетных спектров господствующей части ценнопопуляции (древостоя) выявляет не только естественные процессы ее формирования, развития и самоподдержания, но и отражает воздействие стрессовых факторов, в том числе аэротехногенного загрязнения [12], [21]. Хвойные породы деревьев будучи менее устойчивыми к загрязнению вредными промышленными и автомобильными газообразными примесями служат хорошим биоиндикатором наличия таких загрязнений. На всех исследуемых пробных площадях присутствуют деревья с разными баллами жизненного состояния. Однако их соотношение различается и зависит от близости расположения автотрассы и АЗС. По мере удаления от источника загрязнения наблюдается улучшение жизненного состояния древостоев сосны обыкновенной на ВПП №3,4,5 (200, 300 и 400 метров от автотрассы): переход от сильно ослабленного к ослабленному (табл. 5). Также на данных площадях возрастает и процент деревьев I категории (здоровое), растет показатель средней высоты и соответственно бонитет древостоев (III–I) [22].

Таблица 5 - Состояние древостоев на ВПП DOI: https://doi.org/10.60797/JAE.2025.63.8.6

	Расстояние	Доля деревьев разных категорий состояния, %						Относител
№ ВПП	от источника загрязнени я, м	1	2	3	4	5	Всего деревьев, %	ьное жизненное состояние, %
1	15	22,3	16,1	27,3	21,7	12,6	100	45,6 — сильно ослабленн ый
2	100	20,6	19,8	30,1	19,8	9,7	100	47,5 — сильно ослабленн ый
3	200	39,3	22,3	25,0	9,8	3,6	100	65,4 — ослабленн ый
4	300	30,9	19,1	30,0	16,4	3,6	100	57,1 – ослабленн ый
5	400	34,7	23,4	27,4	12,1	2,4	100	62,6 — ослабленн ый
6	15	26,7	20,0	35,2	15,2	2,9	100	55,5 – ослабленн ый
7	100	31,1	22,7	24,4	17,7	4,1	100	57,6 – ослабленн ый
8	200	36,2	17,2	24,1	18,9	3,6	100	58,9 – ослабленн ый
9	15	27,5	21,7	27,5	17,5	5,8	100	54,5 — ослабленн ый
10	100	29,0	23,0	23,0	17,0	8,0	100	55,1 – ослабленн ый
11	200	30,2	17,6	28,6	21,8	1,8	100	55,1 – ослабленн ый

Проведённый корреляционный анализ по критерию Спирмена связи состояния древостоев на опытных объектах с расстоянием от источника загрязнения и от содержания бенз(а)пирена и нефтепродуктов в почве показал статистически значимые связи с этими показателями (табл. 6). Для показателей состояния древостоев на опытных объектах и расстоянием от источника загрязнения существует статистически значимая ранговая корреляционная связь, которая показывает, что при удалении от него состояние деревьев улучшается. С источниками загрязнения почвенного комплекса также существует связь, но уже обратная, т.е. с увеличением содержания бенз(а)пиренов и нефтепродуктов в почве состояние древостоев ухудшается.

Таблица 6 - Связь состояния древостоев с источниками загрязнения, по критерию Спирмена (Rs) DOI: https://doi.org/10.60797/JAE.2025.63.8.7

Показатель	Показатель Rs		при t(α/2, k)
Расстояние от источника загрязнения, м	Rs= 0,684	0,55	2,262
Бенз(а)пирен (БП), мг/кг	Rs= - 0,702	0,54	2,262
Нефтепродукты (НП),	Rs= - 0,516	0,65	2,262

Показатель	Rs	Ткр	при t(α/2, k)
мг/кг			

Для выявления достоверных различий доли деревьев разных категорий состояния на опытных объектах был проведён Тест Краскела-Уоллиса по полученным данным приведённых в таблице 5. Тест Краскела-Уоллиса по H статистике показал, что существует значимая разница в зависимой переменной между различными группами, $\chi^2(4) = 45,58$, р < 0,001, со средним ранговым показателем 45,36 для группы 1; 26,36 для группы 2; 42,55 для группы 3; 19,55 для группы 4 и 6,18 для группы 5.

После сравнения нескольких групп проведены множественные апостериорные сравнения по аналогии с тестом Тьюки (*T*) для ранговых корреляций, чтобы выяснить, какие же группы различаются. В ходе решения далее для парного сравнения использовали непараметрический критерий Данна, который применим для независимых групп как равной, так и различной численности, и который не предполагает, что данные следуют определенному распределению [20].

Тест Данна с использованием альфа-коэффициента Бонферрони, скорректированного на 0,01, показал, что средние ранги следующих пар категорий состояния деревьев существенно различаются: 1–2; 1–4; 1–5; 2–5; 3–4; 3–5.

Следовательно, воздействие источников загрязнения на категории состояния древостоев на опытных объектах не одинаково и на категорию состояния деревьев в каждом случае действует какой-то ведущий фактор. Это может быть, как и расстояние от источника загрязнения, так и содержание в почве рассматриваемых загрязнителей.

Статистика H равна 11,0097 (4, N = 107).

Значение p равно 0,02645. Результат значим при p < 0,10.

Краткое описание расчета:

$$H = (12/(N(N+1)) \cdot (\sum T2/n) - 3(N+1)$$

$$H = 0,001 \cdot 322614,369 - 324$$

$$H = 11,0097$$

Заключение

На ВПП, находящихся на разном удалении от АЗС, индекс состояния остается практически неизменным, но на стволах некоторых деревьев присутствуют механические повреждения и просматриваются ходы насекомых-вредителей, что может свидетельствовать о более сильном антропогенном воздействии по сравнению с другими участками.

В целом результаты выполненной оценки показывают, что исследованные древостои находятся в относительно удовлетворительном состоянии. Количество сухостоя на ВПП №1 (15 метров от автодороги) в 4 раза превышает количество сухостоя на ВПП №6 (15 метров от A3C), и в 2 раза превышает количество сухостоя на ВПП №9 (15 метров от A3C).

В результате выполненного исследования было установлено, что индекс относительного жизненного состояния древостоев сосны обыкновенной на ВПП, заложенных на расстоянии от трассы А-121 «Сортавала» ниже (ВПП 1 и 2 – «сильно ослабленный»), чем на ВПП вблизи АЗС.

Конфликт интересов

Не указан.

Рецензия

Все статьи проходят рецензирование. Но рецензент или автор статьи предпочли не публиковать рецензию к этой статье в открытом доступе. Рецензия может быть предоставлена компетентным органам по запросу.

Conflict of Interest

None declared.

Review

All articles are peer-reviewed. But the reviewer or the author of the article chose not to publish a review of this article in the public domain. The review can be provided to the competent authorities upon request.

Список литературы / References

- 1. Николаевский В.С. Экологическая оценка загрязнений атмосферного воздуха и состояния лесных насаждений Пушкинского района Московской области. / В.С. Николаевский, Е.А. Козлова // Лесной вестник. 2000. № 6. С. 37–42.
- 2. Цомбуева Б.В. Техногенное загрязнение почв в зоне влияния нефтедобывающего комплекса Республики Калмыкия / Б.В. Цомбуева // Современные проблемы науки и образования. 2013. № 6.
- 3. Норминзаев А.Р. Влияние автотранспорта на окружающую среду. / А.Р. Норминзаев, А.Д. Нуриддинов, Г.Ф. Валиева // Точные науки. 2017. N 10. С. 6—12.
- 4. Терехова В.А. Оценка экологического риска техногенного загрязнения почвы на основе статистического распределения встречаемости видов микромицетов. / В.А. Терехова, В.К. Шитиков, А.Е. Иванова и др. // Экология. 2017. № 5. С. 339–346.
- 5. Торлопова Н.В. Мониторинг сосновых древостоев Республики Коми. / Н.В. Торлопова, С.В. Ильчуков // Экология. 2004. № 6. С. 456—459.
- 6. Цыплаков В.В. Роль древесных растений в очистке атмосферы от загрязняющих веществ в формировании микроклимата. / В.В. Цыплаков, И.С. Усманова // Вестник Саратовского госагроуниверситета им. Н.И. Вавилова. 2013. № 1. C. 35–37.
- 7. Голицин А.Н. Промышленная экология и мониторинг загрязнения природной среды: учебник / А.Н. Голицин. Москва: Оникс, 2010. 336 с.

- 8. Сеннов С.Н. Лесоведение и лесоводство / С.Н. Сеннов. Москва: Acadimia, 2005. 253 с.
- 9. Сеннов С.Н. Уход за лесом (экологические основы) / С.Н. Сеннов. Москва: Наука, 1984. 128 с.
- 10. Робакидзе Е.А. Мониторинг состояния древесных растений в сосняках черничных при загрязнении выбросами Сыктывкарского лесопромышленного комплекса (Республика Коми). / Е.А. Робакидзе, Н.В. Торлопова, К.С. Бобкова и др. // Растительные ресурсы. 2021. № 57 (3). С. 260–274.
- 11. Ярмишко В.Т. Виталитетная структура Pinus sylvestris L. в лесных сообществах с разной степенью и типом антропогенной нарушенности. / В.Т. Ярмишко, В.В. Горшков, Н.И. Ставрова // Растительные ресурсы. 2003. № 39 (4). С. 1–19.
- 12. Ярмишко В.Т. Сосна обыкновенная и атмосферное загрязнение на европейском Севере / В.Т. Ярмишко. Санкт-Петербург: БИН РАН, 1997. 210 с.
- 13. Габов Д.Н. Критерии оценки загрязнения почв полициклическими ароматическими углеводородами. / Д.Н. Габов, В.А. Безносиков, Б.М. Кондратенок и др. // Экология и промышленность России. 2008. № 11. С. 42–45.
- 14. Ищук Т.А. Оценка техногенного загрязнения почв вдоль трассы А-121 «Сортавала». / Т.А. Ищук, В.Е. Вертебный, Ю.В. Хомяков. // Вопросы геологии и комплексного изучения экосистем Восточной Азии: Шестая Всероссийская научная конференция с международным участием: сборник докладов; Благовещенск: ИГиП ДВО РАН, 2022. С. 125–126.
- 15. Алексеев В.А. Диагностика жизненного состояния деревьев и древостоев. / В.А. Алексеев // Лесоведение. 1989. № 4. С. 51–57.
- 16. ГОСТ 17.4.4.02.84-2017 «Охрана природы. Почвы. Методы отбора и подготовки проб для химического, бактериологического и гельминтологического анализа»
- 17. Сыса А.Г. Статистический анализ в биологии и медицине / А.Г. Сыса, Е.П. Живицкая. Минск: ИВЦ Минфина, 2018. 140 с.
- 18. Bonnini, S.Nonparametric Hypothesis Testing: Rank and Permutation Methods with Applications in R. / S. Bonnini, L. Corain, M. Marozzi [et al.] Hoboken: John Wiley & Sons, 2014.
- 19. Шитиков В.К. Путеводитель по применению статистических методов с использованием R/ Планирование исследований и анализ результатов в биологии с помощью программного обеспечения R. / В.К. Шитиков.
- 20. Lehmann E.L. Chapter 9: Multiple testing and simultaneous inference / E.L. Lehmann, J.P. Romano // Testing statistical hypotheses. New York: Springer, 2005. 786 p.
- 21. Ярмишко В.Т. Динамика лесных сообществ Северо-Запада России / В.Т. Ярмишко, И.Ю. Баккал, О.В. Борисова и др. Санкт-Петербург: ВВМ, 2009. 276 с.
- 22. Матвеев С.М. Динамика состояния сосны обыкновенной (Pinus sylvestris L.) вдоль пригородных автотрасс г. Воронежа 1991–2007гг.. / С.М. Матвеев, В.В. Акулов // Вестник Томского государственного университета. 2012. № 363. С. 212–218.

Список литературы на английском языке / References in English

- 1. Nikolaevskij V.S. E'kologicheskaya ocenka zagryaznenij atmosfernogo vozduxa i sostoyaniya lesny'x nasazhdenij Pushkinskogo rajona Moskovskoj oblasti [Environmental assessment of atmospheric air pollution and the condition of forest plantations in the Pushkin district of Moscow Oblast]. / V.S. Nikolaevskij, E.A. Kozlova // Forestry Bulletin. 2000. № 6. P. 37–42. [in Russian]
- 2. Tsombueva B.V. Tekhnogennoe zagryaznenie pochv v zone vliyaniya neftedobyvayushhego kompleksa Respubliki Kalmykiya [Technogenic soil pollution in the area affected by the oil production complex of the Republic of Kalmykia] / B.V. Tsombueva // Sovremennye problemy nauki i obrazovaniya [Modern problems of science and education]. 2013. N_0 6. [in Russian]
- 3. Norminzaev A.R. Vliyanie avtotransporta na okruzhayushhuyu sredu [The impact of motor vehicles on the environment]. / A.R. Norminzaev, A.D. Nuriddinov, G.F. Valieva // Exact Sciences. 2017. № 10. P. 6–12. [in Russian]
- 4. Terexova V.A. Ocenka e'kologicheskogo riska texnogennogo zagryazneniya pochvy' na osnove statisticheskogo raspredeleniya vstrechaemosti vidov mikromicetov [Assessment of the environmental risk of anthropogenic soil contamination based on the statistical distribution of microfungal species occurrence]. / V.A. Terexova, V.K. Shitikov, A.E. Ivanova et al. // Ecology. 2017. $N_{\text{\tiny Ω}}$ 5. P. 339–346. [in Russian]
- 5. Torlopova N.V. Monitoring sosnovy'x drevostoev Respubliki Komi [Monitoring of pine stands in the Komi Republic]. / N.V. Torlopova, S.V. Il'chukov // Ecology. 2004. № 6. Р. 456–459. [in Russian]
- 6. Cy'plakov V.V. Rol' drevesny'x rastenij v ochistke atmosfery' ot zagryaznyayushhix veshhestv v formirovanii mikroklimata [The role of woody plants in purifying the atmosphere of pollutants and shaping the microclimate]. / V.V. Cy'plakov, I.S. Usmanova // Bulletin of the N.I. Vavilov Saratov State Agricultural University. 2013. N_2 1. P. 35–37. [in Russian]
- 7. Golicin A.N. Promy'shlennaya e'kologiya i monitoring zagryazneniya prirodnoj sredy': uchebnik [Industrial ecology and environmental pollution monitoring: textbook] / A.N. Golicin. Moscow: Oniks, 2010. 336 p. [in Russian]
- 8. Sennov S.N. Lesovedenie i lesovodstvo [Forestry and forest management] / S.N. Sennov. Moscow: Acadimia, 2005. 253 p. [in Russian]
- 9. Sennov S.N. Uxod za lesom (e'kologicheskie osnovy') [Forest management (ecological principles)] / S.N. Sennov. Moscow: Nauka, 1984. 128 p. [in Russian]
- 10. Robakidze E.A. Monitoring sostoyaniya drevesny'x rastenij v sosnyakax chernichny'x pri zagryaznenii vy'brosami Sy'kty'vkarskogo lesopromy'shlennogo kompleksa (Respublika Komi) [Monitoring the condition of woody plants in blueberry pine forests affected by pollution from emissions from the Syktyvkar timber industry complex (Republic of Komi)]. / E.A. Robakidze, N.V. Torlopova, K.S. Bobkova et al. // Plant resources. 2021. № 57 (3). P. 260–274. [in Russian]

- 11. Yarmishko V.T. Vitalitetnaya struktura Pinus sylvestris L. v lesny'x soobshhestvax s raznoj stepen'yu i tipom antropogennoj narushennosti [The vitality structure of Pinus sylvestris L. in forest communities with varying degrees and types of anthropogenic disturbance]. / V.T. Yarmishko, V.V. Gorshkov, N.I. Stavrova // Plant resources. 2003. N_{\odot} 39 (4). P. 1–19. [in Russian]
- 12. Yarmishko V.T. Sosna oby'knovennaya i atmosfernoe zagryaznenie na evropejskom Severe [Scots pine and atmospheric pollution in the European North] / V.T. Yarmishko. Saint Petersburg: BIN RAN, 1997. 210 p. [in Russian]
- 13. Gabov D.N. Kriterii ocenki zagryazneniya pochv policiklicheskimi aromaticheskimi uglevodorodami [Criteria for assessing soil contamination with polycyclic aromatic hydrocarbons]. / D.N. Gabov, V.A. Beznosikov, B.M. Kondratenok et al. // Ecology and Industry in Russia. 2008. № 11. P. 42–45. [in Russian]
- 14. Ishhuk T.A. Ocenka texnogennogo zagryazneniya pochv vdol' trassy' A-121 «Sortavala» [Assessment of anthropogenic soil contamination along the A-121 'Sortavala' motorway]. / T.A. Ishhuk, V.E. Vertebny'j, Yu.V. Xomyakov. // Issues of geology and comprehensive study of ecosystems in East Asia: Sixth All-Russian Scientific Conference with international participation: collection of reports; Blagoveshhensk: IGiP DVO RAN, 2022. P. 125–126. [in Russian]
- 15. Alekseev V.A. Diagnostika zhiznennogo sostoyaniya derev'ev i drevostoev [Diagnosis of the vital condition of trees and tree stands]. / V.A. Alekseev // Forestry. 1989. № 4. P. 51–57. [in Russian]
- 16. GOST 17.4.4.02.84-2017 "Okhrana prirody. Pochvy. Metody otbora i podgotovki prob dlya khimicheskogo, bakteriologicheskogo i gel'mintologicheskogo analiza" [GOST 17.4.4.02.84-2017 'Nature conservation. Soils. Methods for sampling and preparation of samples for chemical, bacteriological and helminthological analysis']. [In Russian]
- 17. Sy'sa A.G. Statisticheskij analiz v biologii i medicine [Statistical analysis in biology and medicine] / A.G. Sy'sa, E.P. Zhiviczkaya. Minsk: IVCz Minfina, 2018. 140 p. [in Russian]
- 18. Bonnini, S.Nonparametric Hypothesis Testing: Rank and Permutation Methods with Applications in R. / S. Bonnini, L. Corain, M. Marozzi [et al.] Hoboken: John Wiley & Sons, 2014.
- 19. SHitikov V.K. Putevoditel' po primeneniyu statisticheskikh metodov s ispol'zovaniem R/ Planirovanie issledovanij i analiz rezul'tatov v biologii s pomoshh'yu programmnogo obespecheniya R [Guide to the application of statistical methods using R/ Planning research and analysing results in biology using R software] / V.K. Shitikov. [in Russian]
- 20. Lehmann E.L. Chapter 9: Multiple testing and simultaneous inference / E.L. Lehmann, J.P. Romano // Testing statistical hypotheses. New York: Springer, 2005. 786 p.
- 21. Yarmishko V.T. Dinamika lesny'x soobshhestv Severo-Zapada Rossii [Dynamics of forest communities in northwestern Russia] / V.T. Yarmishko, I.Yu. Bakkal, O.V. Borisova et al. Saint Petersburg: VVM, 2009. 276 p. [in Russian]
- 22. Matveev S.M. Dinamika sostoyaniya sosny' oby'knovennoj (Pinus sylvestris L.) vdol' prigorodny'x avtotrass g. Voronezha 1991–2007gg. [Dynamics of the condition of Scots pine (Pinus sylvestris L.) along suburban motorways in Voronezh, 1991–2007]. / S.M. Matveev, V.V. Akulov // Bulletin of Tomsk State University. 2012. $N_{\text{\tiny 2}}$ 363. P. 212–218. [in Russian]