АГРОХИМИЯ, АГРОПОЧВОВЕДЕНИЕ, ЗАЩИТА И КАРАНТИН PACTEНИЙ / AGROCHEMISTRY, AGROSOIL SCIENCE, PLANT PROTECTION AND QUARANTINE

DOI: https://doi.org/10.60797/JAE.2025.54.12

ВЛИЯНИЕ КОЛЛОИДНОГО РАСТВОРА НАНОЧАСТИЦ СЕРЕБРА НА ПОЧВЕННЫЕ ФИТОПАТОГЕННЫЕ ГРИБЫ НА ПРИМЕРЕ *FUSARIUM SP.*

Научная статья

Хижняк С.В.¹, Хартов С.В.², Коротченко И.С.³, Чирков Д.Ю.⁴, Первышина Г.Г.^{5, *}, Симунин М.М.⁶

¹ORCID: 0000-0003-2583-8857; ³ORCID: 0000-0002-9099-9537; ⁵ORCID: 0000-0001-5880-5395;

^{1, 3} Красноярский государственный аграрный университет, Красноярск, Российская Федерация ^{2, 4, 6} Красноярский научный центр Сибирского отделения Российской академии наук, Красноярск, Российская Федерация

⁴OOO «Наносинтез», Красноярск, Российская Федерация ⁵Сибирский федеральный университет, Красноярск, Российская Федерация

* Корреспондирующий автор (gpervyshina[at]sfu-kras.ru)

Аннотация

В работе дан анализ влияния различных концентрации коллоидного раствора наночастиц серебра на фитопатогенные грибы р. Fusarium на примере изолята F. solani, выделенного из корней поражённой фузариозом сои. Наночастицы в концентрациях 50%, 25% и 12,5% от исходного раствора статистически значимо снижают среднюю длину гиф F. solani. Максимальное снижение длины гиф (в 6 раз относительно контроля) наблюдается при концентрации частиц 50% от исходного раствора. Минимальное снижение (в 1,5 раза относительно контроля) наблюдается при концентрации частиц 12,5% от исходного раствора. Изученные наночастицы снижают максимальную длину гиф в диапазоне от 50% до 3,125% от исходного раствора. Отмечена перспективность дальнейшего изучения как фунгистатических, так и рост-стимулирующих эффектов исследованных наночастиц с научной и практической точек зрения.

Ключевые слова: наночастицы серебра, антигрибная активность, фитопатогенный гриб Fusarium sp., почвы Красноярского края, охрана почв.

INFLUENCE OF COLLOIDAL SILVER NANOPARTICLE SOLUTION ON SOIL PHYTOPATHOGENIC FUNGION ON THE EXAMPLE OF FUSARIUM SP.

Research article

Khizhnyak S.V.¹, Khartov S.V.², Korotchenko I.S.³, Chirkov D.Y.⁴, Pervishina G.G.^{5,*}, Simunin M.M.⁶

¹ORCID: 0000-0003-2583-8857; ³ORCID: 0000-0002-9099-9537; ⁵ORCID: 0000-0001-5880-5395;

^{1, 3} Krasnoyarsk State Agrarian University, Krasnoyarsk, Russian Federation

^{2, 4, 6} Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russian Federation

 $^4\,\rm Nanosintez$ LLC, Krasnoyarsk, Russian Federation $^5\,\rm Siberian$ Federal university, Krasnoyarsk, Russian Federation

* Corresponding author (gpervyshina[at]sfu-kras.ru)

Abstract

The work analyses the effect of different concentrations of colloidal solution of silver nanoparticles on phytopathogenic fungi of *Fusarium* p. on the example of *F. solani* isolate extracted from roots of Fusarium-infected soybean. Nanoparticles in concentrations of 50%, 25% and 12,5% of the initial solution statistically significantly reduced the average length of hyphae of *F. solani*. The maximum reduction in hyphae length (6 times relative to the control) was observed at a particle concentration of 50% of the stock solution. The minimum reduction (1,5 times relative to control) was observed at particle concentration of 12,5% of the initial solution. The studied nanoparticles reduce the maximum length of hyphae in the range from 50% to 3,125% of the initial solution. The prospect of further study of both fungistatic and growth-stimulating effects of the studied nanoparticles from scientific and practical points of view was noted.

Keywords: silver nanoparticles, antifungal activity, phytopathogenic fungus Fusarium sp., soils of Krasnoyarsk Krai, soil conservation.

Введение

На территории Красноярского края одним из наиболее распространенных возбудителей заболеваний растений являются грибы рода *Fusarium*, включающих большое количество видов. Круг растений-хозяев у грибов р. *Fusarium* исключительно широк, они способны поражать как однодольные, так и двудольные растения, представленные как однолетними, так и многолетними культурами. Использованный в данной работе в качестве тест-культуры *Fusarium solani* поражает картофель, горох, сою, тыкву и ряд других культур, выращиваемых на территории Красноярского края

[1]. Кроме этого, он способен вызывать микозы у людей с ослабленным иммунитетом [2]. Заболевания, вызываемые грибами р. *Fusarium*, носят название «фузариозы» и включают поражение наземной и подземной части растения, а также плодов и семян [2].

Широко распространенные методы борьбы с фузариозами, основанные на использовании химических реагентов, привели к широкому распространению резистентных к ним штаммов [3], что свидетельствует о необходимости поиска альтернативных методов решения проблемы [4]. К таковым может быть отнесено применение в сельском хозяйстве наноразмерных частиц [5], [6], в частности, наночастиц серебра [7].

В связи с вышесказанным, целью настоящей работы являлась оценка влияния коллоидного раствора наночастиц серебра на фитопатогенные грибы р. *Fusarium* на примере изолята *F. solani*, выделенного из корней поражённой фузариозом сои.

Методы и принципы исследования

При выполнении исследований использовали коллоидный раствор наночастиц серебра (концентрация серебра составляла 50 мг/л), в составе которого присутствовали: наночастицы размером 4-12 нм (основная часть), размером до 25 нм (отдельные частицы) и агрегаты наночастиц. Коллоидный раствор был изготовлен в Институте физики им. Л.В. Киренского СО РАН.

Исследование коллоидного раствора наночастиц серебра осуществляли с использованием в качестве тест-культуры моноконидиального изолята возбудителя фузариоза сои и картофеля *Fusarium solani* (Mart.) Sacc., 1881, который был выделен из корней поражённой фузариозом сои (УНПК «Борский» ФГБОУ ВО Красноярский ГАУ).

Проверку фунгицидных свойств препарата проводили с помощью теста, основанного на прорастании конидий [8], [9].

Обработку полученных результатов осуществляли при использовании пакетов анализа MS Excel 2007 и StatSoft STATISTICA 6.0.

Основные результаты

Средняя длина проростковых гиф в контрольных вариантах с 1%-ным и 2%-ным растворами сахарозы составила 36,37±12,15 мкм и 29,70±8,45, соответственно, после 8 часов инкубирования (рис.1). При этом максимальная длина проростковых гиф была равна 253 и 270 мкм.

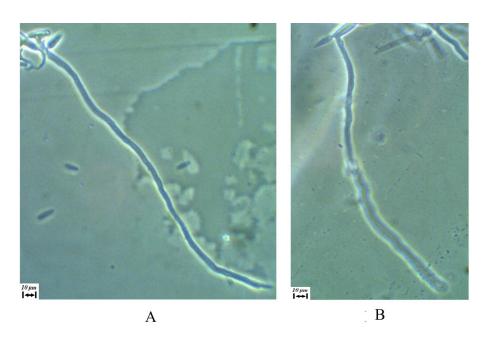


Рисунок 1 - Максимальная длина проростковой гифы *F. solani* в контрольном варианте с 1% (*A*) и 2% -ным (*B*) содержанием сахарозы DOI: https://doi.org/10.60797/JAE.2025.54.12.1

В обоих случаях распределение носило асимметричный характер и больше соответствовало логнормальному распределению, чем нормальному (рис. 2).

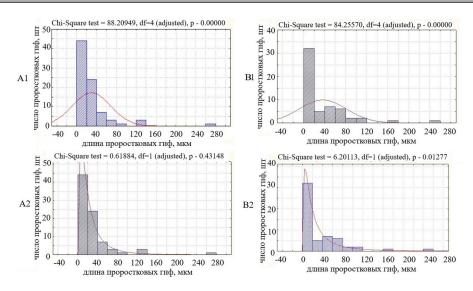


Рисунок 2 - Аппроксимация распределения проростковых гиф в контроле с 1%-ным (*A*) и 2%-ным (*B*) содержанием сахарозы нормальным (*1*) и логнормальным распределением (*2*) DOI: https://doi.org/10.60797/JAE.2025.54.12.2

Статистически значимых различий между средней длиной гиф в контрольных вариантах с 1% и 2% сахарозой зафиксировано не было. Согласно двухвыборочному t-тесту, значимость различий между данными вариантами составила р одностороннее 0,177, р двустороннее – 0,354. Непараметрические тесты также не выявили статистически значимых различий между контрольными вариантами с 1% и 2% сахарозой. Это можно объяснить тем, что сахароза в данном случае играет лишь роль индуктора прорастания, в то время как собственно рост проростковых гиф происходит за счёт запаса питательных веществ, накопленных в конидии. В связи с отсутствием статистически значимых различий между контрольными вариантами с 1% и 2% сахарозой, для сравнения с вариантами с наносеребром был использован объединённый контроль, полученный объединением данных по длине проростковых гиф в 1% и 2% растворах сахарозы.

Данные по средней и максимальной длине проростковых гиф в соответствии с изменениями концентрации наночастиц серебра представлены на рисунке 3 и в таблице 1.

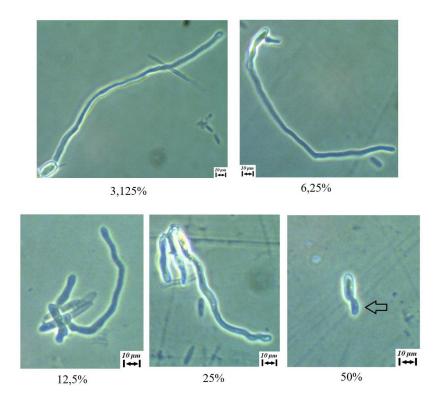


Рисунок 3 - Изменение проростковых гиф *F. solani* в присутствии наночастиц серебра в различных концентрациях от исходного коллоидного раствора DOI: https://doi.org/10.60797/JAE.2025.54.12.3

Таблица 1 - Влияние наночастиц серебра на среднюю и максимальную длину проростковых гиф DOI: https://doi.org/10.60797/JAE.2025.54.12.4

Содержание наночастиц серебра, %	Средняя длина проростковых гиф, мкм	Максимальная длина проростковых гиф, мкм
Контроль	32,38±6,96	261
3,125	35,67±8,9	233
6,25	35,61±6,77	183
12,5	21,42±4,38	90
25,0	21,39±3,23	95
50,0	5,4±2,34	10

Как показано в таблице, существенных отличий средней длины проростковых гиф от объединенного контроля не было зарегистрировано в вариантах с наночастицами серебра в концентрации 3,125 и 6,25% от исходного раствора. При использовании концентрации 12,5% и 25% получены аналогичные данные, фактически не отличающиеся друг от друга. Дополнительно следует отметить, что при использовании наночастиц серебра в концентрации 50% от исходного коллоидного раствора практически не фиксировалось прорастание конидий.

Во всех случаях статистическая значимость различий с контролем по длине проростковых гиф составляет p<0,01 по двухвыборочному t-тесту и p=0,01 по непараметрическому тесту, при этом распределение проростковых гиф по длине является асимметричным, и ближе к логнормальному, чем к нормальному.

Обсуждение

Для сопоставления распределений длины проростковых гиф по частоте встречаемости в разных вариантах эксперимента эти распределения были переведены в единый масштаб (рис. 4)

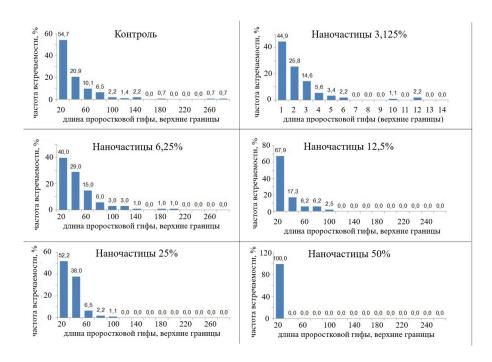


Рисунок 4 - Распределение проростковых гиф по длине в зависимости от концентрации наночастиц серебра DOI: https://doi.org/10.60797/JAE.2025.54.12.5

Как видно из сопоставления гистограмм, по мере увеличения концентрации наночастиц происходит закономерный сдвиг верхней границы распределения влево, то есть уменьшение максимальной длины проростковых гиф. В этой связи была изучена зависимость максимальной длины проростковых гиф от концентрации наночастиц.

Установлено, что наночастицы оказали ингибирующее влияние как на максимальную, так и среднюю длину проростковых гиф, в том числе и в минимально изученной концентрации. При этом следует отметить, что данные зависимости носят ярко выраженный нелинейный характер (рис. 5).

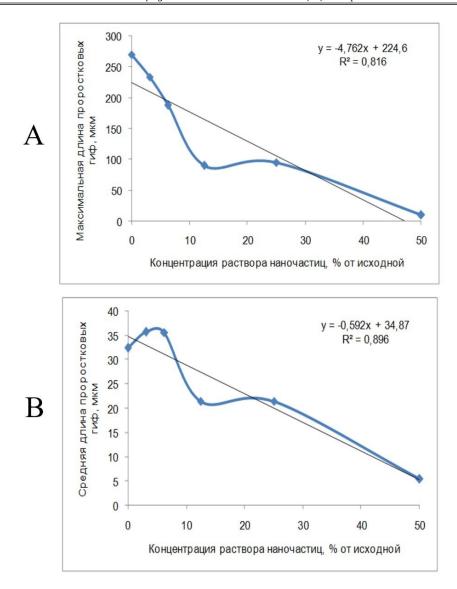


Рисунок 5 - Влияние наночастиц серебра на максимальную (*A*) и среднюю (*B*) длину проростковых гиф *F. solani* после 8 часов инкубирования DOI: https://doi.org/10.60797/JAE.2025.54.12.6

Нелинейный характер эффекта вероятно может быть связан с присутствием в растворе наночастиц разного размерного класса с разными кривыми доза — эффект. То есть в данном случае наблюдаемая зависимость может являться результатом наложения двух дозовых кривых. Данная гипотеза подтверждается и в результате анализа данных, представленных на рисунке 5.

Заключение

На основании представленных данных можно сделать вывод о том, что коллоидный раствор наночастиц серебра, изготовленный в Институте физики им. Л.В. Киренского СО РАН, характеризуется ярко выраженной биологической активностью в отношении возбудителя фузариоза сои *F. solani*. При этом снижение максимальной длины проростковых гиф относительно контроля фиксируется во всём диапазоне исследованных концентраций. При высоких концентрациях наночастиц (выше 12,5%) отмечено статистически значимое снижение средней длины проростковых гиф. В случае малых концентраций (менее 6,25%) отмечено небольшое повышение рассматриваемого параметра.

Полученные при анализе кривых «доза-эффект» данные позволяют с высокой степенью уверенности предположить, что для каждого размерного класса наночастиц характерна своя дозовая кривая, суммирование независимых эффектов которых и обусловливает биологические свойства исследуемого раствора.

Несмотря на то, что для наночастиц серебра при длительном хранении в растворах отмечается агрегация частиц в более крупные комплексы [10], исследуемый коллоидный раствор наночастиц серебра не утратил своих антимикробных свойств после 2,5 месяцев хранения. Дополнительно следует обратить внимание на то, что исследование как фунгистатических, так и рост-стимулирующих эффектов наночастиц серебра является перспективным направлением дальнейшего изучения как с научной, так и с практической точек зрения.

Конфликт интересов

Не указан.

Рецензия

Все статьи проходят рецензирование. Но рецензент или автор статьи предпочли не публиковать рецензию к этой статье в открытом доступе. Рецензия может быть предоставлена компетентным органам по запросу.

Conflict of Interest

None declared.

Review

All articles are peer-reviewed. But the reviewer or the author of the article chose not to publish a review of this article in the public domain. The review can be provided to the competent authorities upon request.

Список литературы / References

- 1. Romberg M.K. Host Range and Phylogeny of Fusarium solani f. sp. eumartii from Potato and Tomato in California. / M.K. Romberg, R.M. Davis // Plant Disease. 2007. Vol. 91. № 5. P. 585–592. DOI: 10.1094/PDIS-91-5-0585.
- 2. Zhang N. Members of the Fusarium solani Species Complex That Cause Infections in Both Humans and Plants Are Common in the Environment / N. Zhang, K. O'Donnell, D.A. Sutton [et al.] // Journal of Clinical Microbiology. 2006. Vol. 44. N₂ 6. P. 2186–2190. DOI: 10.1128/JCM.00120-06.
- 3. Deising H.B. Mechanisms and significance of fungicide resistance / H.B. Deising, S. Reimann, S.F. Pascholati // Brazilian Journal of Microbiology. 2008. Vol 39. № 2. P. 286–295. DOI: 10.1590/S1517-83822008000200017.
- 4. Hollomon D.W. Fungicide resistance: facing the challenge a review / D.W. Hollomon // Plant Protection Science. 2015. Vol. 51. $N_{\rm P}$ 4. P. 170—176. DOI: 10.17221/42/2015-PPS.
- 5. Хижняк С.В. Влияние биогенных наночастиц ферригидрита на эффективность протравливания семян пшеницы / С.В. Хижняк, Д.И. Шевелёв, В.А. Самойлова // Вестник Красноярского государственного аграрного университета. 2015. № 10 (109). С. 179—182. EDN ULXDCP.
- 6. Ланкина Е.П. Исследование антитоксических свойств биогенных наночастиц гидроксида железа в отношении тиабендазол-тебуконазоловых фунгицидов / Е.П. Ланкина, Д.И. Шевелёв, С.В. Хижняк [и др.] // Вестник Красноярского государственного аграрного университета. 2011. № 11 (62). С. 129–133. EDN OJIRHJ.
- 7. Станишевская И.Е. Наночастицы серебра: получение и применение в медицинских целях / И.Е. Станишевская, А.М. Стойнова, А.И. Марахова [и др.] // Разработка и регистрация лекарственных средств. 2016. № 1 (14). С. 66–69. EDN WBODEF.
- 8. Хижняк С.В. Фитосанитарные свойства почвоподобного субстрата / С.В. Хижняк, Н.С. Мануковский // Вестник Красноярского государственного аграрного университета. 2016. № 11 (122). С. 90–96. EDN XATALB.
- 9. Хижняк С.В. Экспересс-метод выявления штаммов-антагонистов для биологической защиты растений от фитопатогенных грибов / С.В. Хижняк, Е.П. Пучкова, С.А. Петрушкина // Приоритетные направления научнотехнологического развития агропромышленного комплекса России: материалы Национальной научно-практической конференции. Рязань: Издательство Рязанского государственного агротехнологического университета имени П.А. Костычева, 2019. Ч. 2. С. 590–594. EDN NVTRSN.
- 10. Мацкевич Е.П. Особенности агрегации наночастиц серебра в коллоидных растворах, синтезированных боргидридным методом / Е.П. Мацкевич, С.Л. Прокопьев // Вестник Белорусского государственного университета. Серия 1: Физика. Математика. Информатика : научно-теоретический журнал. 2012. № 2. С. 52–56. EDN RUPOVR.

Список литературы на английском языке / References in English

- 1. Romberg M.K. Host Range and Phylogeny of Fusarium solani f. sp. eumartii from Potato and Tomato in California. / M.K. Romberg, R.M. Davis // Plant Disease. 2007. Vol. 91. № 5. P. 585–592. DOI: 10.1094/PDIS-91-5-0585.
- 2. Zhang N. Members of the Fusarium solani Species Complex That Cause Infections in Both Humans and Plants Are Common in the Environment / N. Zhang, K. O'Donnell, D.A. Sutton [et al.] // Journal of Clinical Microbiology. 2006. Vol. 44. N_{2} 6. P. 2186–2190. DOI: 10.1128/JCM.00120-06.
- 3. Deising H.B. Mechanisms and significance of fungicide resistance / H.B. Deising, S. Reimann, S.F. Pascholati // Brazilian Journal of Microbiology. 2008. Vol 39. № 2. P. 286–295. DOI: 10.1590/S1517-83822008000200017.
- 4. Hollomon D.W. Fungicide resistance: facing the challenge a review / D.W. Hollomon // Plant Protection Science. 2015. Vol. 51. № 4. P. 170–176. DOI: 10.17221/42/2015-PPS.
- 5. Khizhnyak S.V. Vlijanie biogennyh nanochastits ferrigidrita na effektivnost' protravlivanija semjan pshenitsy [Influence of biogenic ferrihydrite nanoparticles on the efficiency of fungicide treatment of wheat seeds] / S.V. Khizhnyak, D.I. Shevelyov, V.A. Samoylova // Vestnik Krasnojarskogo gosudarstvennogo agrarnogo universiteta [Bulletin of the Krasnoyarsk State Agrarian University]. 2015. N_0 10 (109). P. 179–182. EDN ULXDCP. [in Russian]
- 6. Lankina E.P. Issledovanie antitoksicheskih svojstv biogennyh nanochastits gidroksida zheleza v otnoshenii tiabendazoltebukonazolovyh fungitsidov [Research of the antitoxic properties of the iron hydroxide biogene nanoparticles concerning thiabendazole-tebuconazole fungicides] / E.P. Lankina, D.I. Shevelev, S.V. Khizhnyak [et al.] // Vestnik Krasnojarskogo gosudarstvennogo agrarnogo universiteta [Bulletin of Krasnoyarsk State Agrarian University]. 2011. № 11 (62). P. 129–133. EDN OJIRHJ. [in Russian]
- 7. Stanishevskaya I.E. Nanochastitsy serebra: poluchenie i primenenie v meditsinskih tseljah [Silver nanoparticles: preparation and use for medical purposes] / I.E. Stanishevskaya, A.M. Stoinova, A.I. Marakhova [et al.] // Development and Registration of Medicines. 2016. \mathbb{N}_{2} 1 (14). P. 66–69. EDN WBODEF. [in Russian]
- 8. Khizhnyak S.V. Fitosanitarnye svojstva pochvopodobnogo substrata [Phytosanitary properties of soil-like substrate] / S.V. Khizhnyak, N.S. Manukovsky // Vestnik Krasnojarskogo gosudarstvennogo agrarnogo universiteta [Bulletin of Krasnoyarsk State Agrarian University]. 2016. № 11 (122). P. 90–96. EDN XATALB. [in Russian]

- 9. Khizhnyak S.V. Eksperess-metod vyjavlenija shtammov-antagonistov dlja biologicheskoj zaschity rastenij ot fitopatogennyh gribov [Express method for identifying antagonist strains for biological protection of plants from phytopathogenic fungi] / S.V. Khizhnyak, E.P. Puchkova, S.A. Petrushkina // Prioritetnye napravlenija nauchnotehnologicheskogo razvitija agropromyshlennogo kompleksa Rossii [Priority directions of scientific and technological development of the agro-industrial complex of Russia]: materials of the National Scientific and Practical Conference. Ryazan: Publishing House of Ryazan State Agrotechnological University named after P.A. Kostychev, 2019. Part 2. P. 590–594. EDN NVTRSN. [in Russian]
- 10. Matskevich E.P. Osobennosti agregatsii nanochastits serebra v kolloidnyh rastvorah, sintezirovannyh borgidridnym metodom [Features of aggregation of silver nanoparticles in colloidal solutions synthesized by the borohydride method] / E.P. Matskevich, S.L. Prokop'ev // Vestnik Belorusskogo gosudarstvennogo universiteta. Serija 1: Fizika. Matematika. Informatika [Bulletin of the Belarusian State University. Series 1: Physics. Mathematics. Informatics: Scientific and Theoretical Journal]. 2012. $N_{\rm D}$ 2. P. 52–56. EDN RUPOVR. [in Russian]