PROSPECTS FOR EVALUATING THE IN VITRO BIOAVAILABILITY OF PROTECTED VITAMIN A IN BIORELEVANT MEDIA OF FARM ANIMALS

Main Article Content

N.G. Li
T.A. Senotrusova
O.M. Son
Yu.I. Melishkevich
U.M. Adamu
A.B. Podvolotskaya

Abstract

Bioavailability is one of the most important indicators in assessing the absorption of vitamins by a living organism. Bioavailability is the assessment of the amount of nutrients absorbed from food/feed products through the gastrointestinal tract of an organism. Vitamin A is said to be bioavailable when it is converted to retinol and retinoic acid; absorbed by the intestinal epithelium. This study followed a new approach as an addendum to the conventional in vitro digestion models using microencapsulation to look into parameters that affect the bioavailability of vitamin A using in vitro models of pigs and cattle; to evaluate the bioavailability of a protected vitamin A in biorelevant environments of the gastrointestinal tract of farm animals. Encapsulated samples of vitamin A (retinol acetate) were obtained from Arnika LLC (Vladivostok, Russia) at different concentrations and divided into six groups. Parameters affecting the release of vitamin A from the microcapsules were evaluated through a spectrophotometric method by measuring the optical density of the biorelevant medium at a wavelength of 850 nm in an RTS-1 bioreactor. The result showed that the solubility kinetics of microencapsulated vitamin A samples varied with time and depended on the biorelevant media of pigs and cattle. It was also observed that the simulated gastrointestinal fluid (GIF) media at the intestinal stage showed solubility of microencapsulated vitamin A. Thus, it can be concluded that the components of the microcapsule shell are most soluble in the biorelevant environment of the intestine. It is also clear that microencapsulation technology can increase vitamin A bioavailability. Our findings unequivocally demonstrated that to enhance the bioavailability of vitamins; there is a need to incorporate modern technologies like microencapsulation for better delivery of the vitamins and other macromolecules.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

Section
Auxiliary disciplines

References

Ayuso M. Effects of dietary vitamin A supplementation or restriction and its timing on retinol and α-tocopherol accumulation and gene expression in heavy pigs / M. Ayuso, C. Óvilo, A. Fernández et al. // Anim. Feed Sci. Technol. –Elsevier B.V. 2015. – Vol. Complete, –№ 202. –P. 62–74.

Bernauer U. Scientific Committee on Consumer Safety SCCS OPINION ON Vitamin A (Retinol, Retinyl Acetate, Retinyl Palmitate). / U. Bernauer, L. Bodin, L. Celleno // Sci Comm Consum Saf SCCS Opin Vitam A. – Pp. 85. DOI: 10.2875/642264.2016.

Brodkorb A. INFOGEST static in vitro simulation of gastrointestinal food digestion / A. Brodkorb, L. Egger, M. Alminger // Nature Protocols. 2019. P.991–1014. DOI: 10.1038/s41596-018-0119-1.

Colombo R. Advances in static in vitro digestion models after the COST action Infogest consensus protocol / R. Colombo, L. Ferron, I. Frosi et al. // Food Funct. 2021. – Vol. 12(17). – P.7619-7636. DOI: 10.1039/D1FO01089A.

Corrêa S.R. of biofortified cowpea and sweet potato: Bioavailability of iron and interaction with vitamin A in vivo and in vitro / S.R. Corrêa, P. Brigide, M. das G. Vaz-Tostes et al. // J Food Sci. 2020 – Vol. 85(3). – P. 816-823. DOI: 10.1111/1750-3841.15064.

Dalto D.B. Bioavailability of Vitamin B 12 from Dairy Products Using a Pig Model / D.B. Dalto, I. Audet, C.L. Girard et al. // Nutrients. 2018 – Vol. 85(3). – P. 1134. DOI: 10.3390/nu10091134.

EFSA recommends revised maximum vitamin A levels in feed for main food producing animals // EFSA. URL: https://www.efsa.europa.eu/en/news/efsa-recommends-revised-maximum-vitamin-levels-feed-main-food-producing-animals (accessed 29. 04. 2022)

Egger L. Digestion of milk proteins: Comparing static and dynamic in vitro digestion systems with in vivo data / L. Egger, O. Ménard, C. Baumann // Food Res Int. 2019. – P. 118:32-39. DOI: 10.1016/J.FOODRES.

Factors Affecting the Bioaccessibility and Bioavailability of Polyphenols // Frontiers Research Topic. URL: https://www.frontiersin.org/research-topics/23012/factors-affecting-the-bioaccessibility-and-bioavailability-of-polyphenols (accessed 28. 04. 2022)

Fitri I.A. Encapsulation of β-Carotene in Oil-in-Water Emulsions Containing Nanocellulose: Impact on Emulsion Properties, In Vitro Digestion, and Bioaccessibility / I.A. Fitri, W. Mitbumrung, P. Akanitkul, et al. // Polymers (Basel). DOI: 10.3390/POLYM14071414.

Gonçalves A. Microencapsulation of vitamin A: A review / A. Gonçalves, B.N. Estevinho, F. Rocha // Trends Food Sci. Technol. –Elsevier. 2016. –Vol. 51. –P. 76–87.

Gattu S. Epithelial retinoic acid receptor β regulates serum amyloid A expression and vitamin A-dependent intestinal immunity. / S. Gattu, Y.J. Bang, M. Pendse // Proc Natl Acad Sci U S A. – Vol. 116(22). – P 10911-10916. DOI: 10.1073/PNAS.1812069116.2019

He W. In vitro and in vivo studies on ocular vitamin A palmitate cationic liposomal in situ gels / W. He, X. Guo, M. Feng et al. // Int. J. Pharm. –Elsevier.2013. –Vol. 458, –№ 2. –P. 305–314.

Hiolle M. In vitro digestion of complex foods: How microstructure influences food disintegration and micronutrient bioaccessibility. / M. Hiolle, V. Lechevalier, J. Floury // Food Res Int. 2020 – P. 128: 108817. DOI: 10.1016/J.FOODRES.2019.108817.

Kihal A. Short communication: Quantification of the effect of mycotoxin binders on the bioavailability of fat-soluble vitamins in vitro / A. Kihal, M.E. Rodríguez-Prado, C. Cristofol et al. // Animals. 2021. –Vol. 11(8). DOI: 10.3390/ani11082251.

Liu X. Co-encapsulation of Vitamin C and β-Carotene in liposomes: Storage stability, antioxidant activity, and in vitro gastrointestinal digestion. / X. Liu, P. Wang, Y-X. Zou et al. // Published online. 2020. DOI: 10.1016/j.foodres.2020.109587

Mackie A. InfoGest Consensus Method / A. Mackie, N. Rigby. DOI:10.1007/978-3-319-16104-4_14

Meléndez-Martínez A.J. Provitamin A carotenoids and ascorbic acid contents of the different types of orange juices marketed in Spain / A.J. Meléndez-Martínez, I.M. Vicario, F.J. Heredia // Food Chem. 2007. – Vol. 101(1) – P. 177-184. DOI: 10.1016/J.FOODCHEM. 2006.01.023.

Minekus M. A standardised static in vitro digestion method suitable for food – an international consensus / M. Minekus, M. Alminger, P. Alvito // Food Funct. 2014. – Vol. 5(6). P.–1113-1124. DOI: 10.1039/C3FO60702J

Moran N.E. Intrinsic and Extrinsic Factors Impacting Absorption, Metabolism, and Health Effects of Dietary Carotenoids / N.E. Moran, E.S. Mohn, N. Hason et al. // Published online. 2018. DOI: 10.1093/advances/nmy025

Nutrition in Beef Cattle - Beef Cattle Research Council. URL: https://www.beefresearch.ca/research-topic.cfm/nutrition-in-beef-cattle-107 (accessed 28.04.2022.)

Nutritional Requirements of Pigs - Management and Nutrition - MSD Veterinary Manual. URL: https://www.msdvetmanual.com/veterinary/management-and-nutrition/nutrition-pigs/nutritional-requirements-of-pigs#v54957830 (accessed 28.04.2022.)

Penugonda K. Bioavailable Iron and Vitamin A in Newly Formulated, Extruded Corn, Soybean, Sorghum, and Cowpea Fortified-Blended Foods in the In Vitro Digestion/Caco-2 Cell Model / K. Penugonda, N.M. Fiorentino, S. Alavi et al. // Curr Dev Nutr. 2018;2(7). DOI: 10.1093/CDN/NZY021

Petry F.C. Impact of in vitro digestion phases on the stability and bioaccessibility of carotenoids and their esters in mandarin pulps / F.C. Petry, A.Z. Mercadante // Food Funct. –The Royal Society of Chemistry. 2017. –Vol. 8, –№ 11. – P. 3951–3963.

Rana S. Effect of sodium caseinate and vitamin A complexation on bioaccessibility and bioavailability of vitamin A in Caco-2 cells. / S. Rana, S. Arora, C. Gupta et al. // Food Res Int.– Vol. 121. – P. 910-918. DOI: 10.1016/J.FOODRES.2019.01.019. 2019.

Shilpa S. Factors affecting bioaccessibility and bio-efficacy of carotenoids. / S. Shilpa, H.J. Shwetha, M. Raju et al. // Carotenoids Prop Process Appl. 2020. – P. 41-73. DOI: 10.1016/B978-0-12-817067-0.00002-6.

Stinco C.M. Bioaccessibility of carotenoids, vitamin A and α-tocopherol, from commercial milk-fruit juice beverages: Contribution to the recommended daily intake / C.M. Stinco, G. Pumilia, D. Giuffrida et al. // J. Food Compos Anal.– Vol. 78. – P 24-32. DOI: 10.1016/J.JFCA.2019.01.019. 2019.

Tan Y. Bioaccessibility of oil-soluble vitamins (A, D, E) in plant-based emulsions: impact of oil droplet size / Y. Tan, H. Zhou, Z. Zhang et al. // Food Funct. –The Royal Society of Chemistry.2021. –Vol. 12, –№ 9. –P. 3883–3897.

Velázquez-De Lucio B.S. Exogenous enzymes as zootechnical additives in animal feed: A review. / B.S. Velázquez-De Lucio, E.M. Hernández-Domínguez, M. Villa-García // Catalysts. 2021. –Vol. 11(7). DOI: 10.3390/catal11070851.

Vitamin A and Carotenoids - Health Professional Fact Sheet. URL: https://ods.od.nih.gov/factsheets/VitaminA-HealthProfessional/ (accessed 29.04.2022)

Werner S. Bioaccessibility of Carotenoids and Vitamin E from Pasta: Evaluation of an in Vitro Digestion Model / S. Werner, V. Böhm // J. Agric Food Chem. 2011. – Vol. 59 (4). –1163-1170. DOI: 0.1021/JF103892Y.

Yang P. Determination and Evaluation of Bioavailability of Vitamins from Different Multivitamin Supplements Using a Pig Model / P. Yang, H. Wang, L. Li et al. // Published online. 2021. DOI: 10.3390/agriculture11050418

Yu J. Effect of heat stress on the porcine small intestine: a morphological and gene expression study / J. Yu, P. Yin, F. Liu et al. // Comp. Biochem. Physiol. A. Mol. Integr. Physiol. –Comp Biochem Physiol A Mol Integr Physiol.2010. – Vol. 156, –№ 1. –P. 119–128.

Yang P. Effects of Vitamin Forms and Levels on Vitamin Bioavailability and Growth Performance in Piglets / P. Yang, J. Zhao, H. Wang et al. // Appl. Sci. . – Multidisciplinary Digital Publishing Institute. 2020. –Vol. 10, –№ 14. – P. 4903.