EFFECT OF HALOTOLERANT METHYLOTROPHS ISOLATED FROM SALINE SOIL RHIZOSPHERE ON DIMINUTION OF SALT STRESS IN WHEAT (TRITICUM AESTIVUM L.)

Научная статья
DOI:
https://doi.org/10.23649/jae.2017.3.4.3
Выпуск: № 3 (4), 2017
Опубликована:
05.11.2017
PDF

Аннотация

Two aerobic, halotolerant, facultatively methylotrophic strains M1K and M7 were isolated from the Suaeda prostrata Pall. and Plantago maritima L. rhizospheres from saline soils of the Solikamsk technogenic ecosystem. The isolates showed growth at 5–10% NaCl concentration. Based on 16S rRNA and mxaF gene sequence analysis, the obtained strains were classified as Methylophaga nitratireducenticrescens M1K and Paracoccus sp. M7. Within 5 days of the inoculation experiment, the wheat seedlings colonized with the isolated strains under 170 mM of NaCl showed an increase in growth parameters and synthesis of plant pigments over the control samples. The ability of analyzed cultures to influence indole-3-acetic acid (IAA) synthesis from L-tryptophan in the culture medium was found. The obtained data suggest the possibility of using isolated symbiotic bacterial strains for the creation of biofertilizer – plant growth promoter in the salt affected soils.

Полный текст только в pdf

Список литературы

  • Abanda-Nkpwatt, D., Müsch, M., Tschiersch, J., Boettner, M., Schwab, W. (2006). Molecular interaction between Methylobacterium extorquens and seedlings: growth promotion, methanol consumption, and localization of the methanol emission site. Journal Of Experimental Botany, 57, 4025 – 4032

  • Fedorov, D.N., Doronina, N.V., Trotsenko, Y.A. (2011). Phytosymbiosis of aerobic methylobacteria: New facts and views. Microbiology (English translation of Mikrobiologiya), 80, 443 – 454

  • Gordon, S.A., Weber, R.P. (1951). Colorimetric estimation of indole-acetic acid. Plant Physiology, 26, 192–195

  • Kutschera, U. (2007). Plant-associated methylobacteria as co-evolved phytosymbionts. Plant Signaling & Behavior, 2, 74 – 78

  • Lane, D.J. (1991). 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds). Nucleic Acids Techniques in Bacterial Systematics, Academic Press: Chichester, UK, pp. 115–167

  • McDonald, I.R., Murrell, J.C. (1997). The methanol dehydrogenase structural gene mxaF and its use as a functional gene probe for methanotrophs and methylotrophs. Applied And Environmental Microbiology, 63, 3218–3224

  • Neufeld JD, Schäfer H, Cox MJ, Boden R, McDonald IR, Murrell JC (2007). Stable-isotope probing implicates Methylophaga spp and novel Gammaproteobacteria in marine methanol and methylamine metabolism. ISME J 1, 480 – 491

  • Patil, A.D. (2013). Alleviating salt stress in crop plants through salt tolerant microbes. International Journal Of Scientific Research, 4, 1297 – 1302

  • Roy, S.J., Negrão, S., Tester, M. (2014). Salt resistant crop plants. Current Opinion In Biotechnology, 26, 115 – 124

  • Saharan, B.S., Nehra, V. (2011). Plant growth promoting rhizobacteria: A critical review. Life Sciences And Medicine Research, LSMR-21

  • Sohrabi, Y., Heidari, G., Weisany, W., Golezani, K.G., Mohammadi, K. (2012). Changes of antioxidative enzymes, lipid peroxidation and chlorophyll content in chickpea types colonized by different Glomus species under drought stress. Symbiosis, 56, 5–18