ГАЛОТОЛЕРАНТНЫЕ ФОСФАТСОЛЮБИЛИЗИРУЮЩИЕ ИУК-СИНТЕЗИРУЮЩИЕ ПРЕДСТАВИТЕЛИ РОДА PANTOEA СТИМУЛИРУЮТ СИНТЕЗ ПРОЛИНА В ПРОРОСТКАХ ПШЕНИЦЫ В УСЛОВИЯХ СОЛЕВОГО СТРЕССА

Научная статья
DOI:
https://doi.org/10.23649/jae.2021.2.18.3
Выпуск: № 2 (18), 2021
Опубликована:
24.06.2021
PDF

Аннотация

Два галотолерантных бактериальных штамма рода Pantoea были изолированы с растений, произрастающих на территории солеотвалов Соликамского месторождения калийных солей (Пермский край, Россия). Микроорганизмы были способны к фосфатсолюбилизации и синтезу индолил-3-уксусной кислоты (ИУК). Максимум накопления ИУК происходил, когда культура выходила на стационарную фазу роста. В эксперименте по влиянию штаммов на накопление пролина в сырой массе проростков пшеницы при солевом стрессе на третий день, были достигнуты наибольшие значения, превышавшие контрольные в 3 и 2.4 раза. При этом существенное увеличение содержания общего белка в вариантах с солью наблюдалось на 7 сутки эксперимента, составив 113% и 138% для A1 и A15 по сравнению с контролем.

Полный текст только в pdf

Список литературы

  • Johari-Pireivatlou M. Effect of soil water stress on yield and proline content of four wheat lines / M. Johari-Pireivatlou // Afr.J.Biotechnol. – 2010. – Vol.9. – P.36–40.

  • Kaur G. Modulation of proline metabolism under drought and salt stress conditions in wheat seedlings / G. Kaur, B. Asthir, N.S. Bains // Ind.J.Biochem.Biophys. – 2018. – Vol.55. – P.114–124.

  • Gopalakrishnan T. Modeling and mapping of soil salinity and its impact on paddy lands in jaffna peninsula, Sri Lanka / T. Gopalakrishnan, L. Kumar // Sustainability. – 2020. – Vol.12. doi:10.3390/su12208317.

  • Sankar B. Drought-induced biochemical modifications and proline metabolism in Abelmoschus esculentus (L.) / B. Sankar, C.A. Jaleel, P. Manivannan and others // Moench.Acta Bot.Croat. – 2007. – Vol.66. – P.43–56.

  • Singh M. Proline and salinity tolerance in plants / M. Singh, J. Kumar, V.P. Singh and others // Biochem.Pharmacol. – 2014. – Vol.3. doi: 10.4172/2167-0501.1000e170.

  • Nia S.H. Yield and yield components of wheat as affected by salinity and inoculation with Azospirillum strains from saline or non-saline soil / S.H. Nia, M.J. Zarea, F. Rejali and others // JSSAS. – 2012. – Vol.11. – P.113–121.

  • Asuming-Brempong S. Isolation of phosphate solubilizing bacteria from tropical soil / S. Asuming-Brempong, N.K. Aferi // Glob.Adv.Res.J.Agric.Sci. – 2014. – Vol.3. – P.8–15.

  • Saharan B.S. Plant growth promoting rhizobacteria: A critical review / B.S. Saharan, V. Nehra // LSMR. – 2011. – Vol.11: LSMR-21.

  • Apine O.A. Optimization of medium for indole-3-acetic acid production using Pantoea agglomerans strain PVM / O.A. Apine, J.P. Jadhav // J.Appl.Microbiol. – 2011. – Vol.110. – P.1235–1244.

  • Maghsoudi K. P5CS expression level and proline accumulation in the sensitive and tolerant wheat cultivars under control and drought stress conditions in the presence/absence of silicon and salicylic acid / K. Maghsoudi, Y. Emam, A. Niazi and others // J.Plant Interact. – 2018. – Vol.13. – P.461–471.

  • Poustini K. Proline accumulation as a response to salt stress in 30 wheat (Triticum aestivum L.) cultivars differing in salt tolerance / K. Poustini, A. Siosemardeh, M. Ranjbar // Genet.Resour.Crop.Evol. – 2007. – Vol.54. – P.925–934.

  • Gordon S.A. Colorimetric estimation of indole-acetic acid / S.A. Gordon, R.P. Weber // Plant Physiol. – 1951. – Vol.26. – P.192–195.

  • Lichtenthaler H.K. Chlorophylls and carotenoids, the pigments of photosynthetic biomembranes. In: Douce R. and Packer L. (eds.) / H.K. Lichtenthaler // Methods Enzymol. – 1987. – Vol.148. – P.350–382.

  • Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding / M.M. Bradford // Anal.Biochem. – 1976. – Vol.72. – P.248–254.

  • Bates L.S. Rapid determination of free proline for water stress studies / L.S. Bates, R.P. Waldern, I.D. Teare // Plant and Soil. – 1973. – Vol.39. – P.205–207.

  • Pikovskaya R.I. Mobilization of phosphorus in soil in connection with the vital activity of some microbial species / R.I. Pikovskaya // Mikrobiologiia. – 1948. – Vol.17. – P.362–370.

  • Dastager S.G. Isolation and characterization of plant growth-promoting strain Pantoea NII-186 from western ghat forests oil, India / S.G. Dastager, C.K. Deepa, S.C. Puneet and others // Lett.Appl.Microbiol. – 2009. – Vol.49. – P.20–25.

  • Chen C. Pantoea alhagi, a novel endophytic bacterium with ability to improve growth and drought tolerance in wheat / C. Chen, K. Xin, H. Liu and others // Sci Rep. – 2017. – Vol.7. doi:10.1038/srep41564.

  • Chérif-Silini H. Isolation and characterization of plant growth promoting traits of a rhizobacteria: Pantoea agglomerans lma2 Pak / H. Chérif-Silini, A. Silini, M. Ghoul and others // J.Biol.Sci. – 2012. – Vol.15. – P.267–276.

  • Chérif-Silini H. Durum wheat stress tolerance induced by endophyte Pantoea agglomerans with genes contributing to plant functions and secondary metabolite arsenal / H. Cherif-Silini, B. Thissera, A.C. Bouket and others // Int.J.Mol.Sci. – 2019. – Vol.20. doi: 10.3390/ijms20163989.

  • Brady C. Phylogeny and identification of Pantoea species associated with plants, humans and the natural environment based on multilocus sequence analysis (MLSA) / C. Brady, I. Cleenwerck, S. Venter and others // Syst.Appl.Microbiol. – 2008. – Vol.31. – P.447–460.

  • Egorova M. First report of Pantoea ananatis causing grain discolouration and leaf blight of rice in Russia / M. Egorova, E. Mazurin, A.N. Ignatov // New Disease Reports. – 2015. – Vol.32. – P.21.

  • Kageyama B. Pantoea punctata sp. nov., Pantoea citrea sp. nov., and Pantoea terrea sp. nov. isolated from fruit and soil samples / B. Kageyama, M. Nakae, S. Yagi and others // Int.J.Syst.Bacteriol. – 1992. – Vol.42. – P.203–210.

  • Azizi M.M.F. The emergence of Pantoea species as a future threat to global rice production / M.M.F. Azizi, S.I. Ismail, M.Y. Ina-Salwany and others // J.Plant Prot.Res. – 2020. doi: 10.24425/jppr.2020.133958.

  • Tsavkelova E.A. Bacteria associated with orchid roots and microbial production of auxin. / E.A. Tsavkelova, T.A. Cherdyntseva, S.G. Botina and others // Microbiol.Res. – 2007. – Vol.162. – P.69–76.

  • Acuña J.J. Indole acetic acid and phytase activity produced by rhizosphere bacilli as affected by pH and metals / J. J. Acuña, M.A. Jorquera, O.A. Martínez and others // J.Soil Sci.Plant Nutr. – 2011. – Vol.11. – P.1–12.

  • Huang Z. Salt stress encourages proline accumulation by regulating proline biosynthesis and degradation in Jerusalem artichoke plantlets / Z. Huang, L. Zhao, D. Chen and others // PLoS ONE. – 2013. – Vol.8. doi:10.1371/journal.pone.0062085.