HALOTOLERANT PHOSPHATE SOLUBILIZING IAA–SYNTHESIZING REPRESENTATIVES OF PANTOEA GENUS PROMOTE PROLINE SYNTHESIS IN WHEAT SEEDLINGS UNDER SALT STRESS

Main Article Content

Dmitry Sharavin

Abstract

Two halotolerant bacterial strains A1 and A15 of Pantoea genus were isolated from the plants growing in saline soils near the waste banks of Solikamsk technogenic biotope (Perm krai, Russia). Microorganisms were able to produce indole-3-acetic acid (IAA) from L-tryptophan and solubilize insoluble phosphates. Maximum accumulation of IAA occurred at the stationary growth phase. In the experiment with wheat seedlings inoculated with isolated strains under salt stress condition, proline concentrations in fresh weight on day 3 were 3 and 2.4 times higher than the control ones reaching 616 and 485 µg/g for A1 and A15 with 1% NaCl respectively. However the higher values of protein content in the variants with salt were achieved only within 7 days, accounting 113% and 138% of the respective total protein amount in the control with 1% of salt for A1 and A15 respectively.

Article Details

Section
Crop production

References

Johari-Pireivatlou M. Effect of soil water stress on yield and proline content of four wheat lines / M. Johari-Pireivatlou // Afr.J.Biotechnol. – 2010. – Vol.9. – P.36–40.

Kaur G. Modulation of proline metabolism under drought and salt stress conditions in wheat seedlings / G. Kaur, B. Asthir, N.S. Bains // Ind.J.Biochem.Biophys. – 2018. – Vol.55. – P.114–124.

Gopalakrishnan T. Modeling and mapping of soil salinity and its impact on paddy lands in jaffna peninsula, Sri Lanka / T. Gopalakrishnan, L. Kumar // Sustainability. – 2020. – Vol.12. doi:10.3390/su12208317.

Sankar B. Drought-induced biochemical modifications and proline metabolism in Abelmoschus esculentus (L.) / B. Sankar, C.A. Jaleel, P. Manivannan and others // Moench.Acta Bot.Croat. – 2007. – Vol.66. – P.43–56.

Singh M. Proline and salinity tolerance in plants / M. Singh, J. Kumar, V.P. Singh and others // Biochem.Pharmacol. – 2014. – Vol.3. doi: 10.4172/2167-0501.1000e170.

Nia S.H. Yield and yield components of wheat as affected by salinity and inoculation with Azospirillum strains from saline or non-saline soil / S.H. Nia, M.J. Zarea, F. Rejali and others // JSSAS. – 2012. – Vol.11. – P.113–121.

Asuming-Brempong S. Isolation of phosphate solubilizing bacteria from tropical soil / S. Asuming-Brempong, N.K. Aferi // Glob.Adv.Res.J.Agric.Sci. – 2014. – Vol.3. – P.8–15.

Saharan B.S. Plant growth promoting rhizobacteria: A critical review / B.S. Saharan, V. Nehra // LSMR. – 2011. – Vol.11: LSMR-21.

Apine O.A. Optimization of medium for indole-3-acetic acid production using Pantoea agglomerans strain PVM / O.A. Apine, J.P. Jadhav // J.Appl.Microbiol. – 2011. – Vol.110. – P.1235–1244.

Maghsoudi K. P5CS expression level and proline accumulation in the sensitive and tolerant wheat cultivars under control and drought stress conditions in the presence/absence of silicon and salicylic acid / K. Maghsoudi, Y. Emam, A. Niazi and others // J.Plant Interact. – 2018. – Vol.13. – P.461–471.

Poustini K. Proline accumulation as a response to salt stress in 30 wheat (Triticum aestivum L.) cultivars differing in salt tolerance / K. Poustini, A. Siosemardeh, M. Ranjbar // Genet.Resour.Crop.Evol. – 2007. – Vol.54. – P.925–934.

Gordon S.A. Colorimetric estimation of indole-acetic acid / S.A. Gordon, R.P. Weber // Plant Physiol. – 1951. – Vol.26. – P.192–195.

Lichtenthaler H.K. Chlorophylls and carotenoids, the pigments of photosynthetic biomembranes. In: Douce R. and Packer L. (eds.) / H.K. Lichtenthaler // Methods Enzymol. – 1987. – Vol.148. – P.350–382.

Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding / M.M. Bradford // Anal.Biochem. – 1976. – Vol.72. – P.248–254.

Bates L.S. Rapid determination of free proline for water stress studies / L.S. Bates, R.P. Waldern, I.D. Teare // Plant and Soil. – 1973. – Vol.39. – P.205–207.

Pikovskaya R.I. Mobilization of phosphorus in soil in connection with the vital activity of some microbial species / R.I. Pikovskaya // Mikrobiologiia. – 1948. – Vol.17. – P.362–370.

Dastager S.G. Isolation and characterization of plant growth-promoting strain Pantoea NII-186 from western ghat forests oil, India / S.G. Dastager, C.K. Deepa, S.C. Puneet and others // Lett.Appl.Microbiol. – 2009. – Vol.49. – P.20–25.

Chen C. Pantoea alhagi, a novel endophytic bacterium with ability to improve growth and drought tolerance in wheat / C. Chen, K. Xin, H. Liu and others // Sci Rep. – 2017. – Vol.7. doi:10.1038/srep41564.

Chérif-Silini H. Isolation and characterization of plant growth promoting traits of a rhizobacteria: Pantoea agglomerans lma2 Pak / H. Chérif-Silini, A. Silini, M. Ghoul and others // J.Biol.Sci. – 2012. – Vol.15. – P.267–276.

Chérif-Silini H. Durum wheat stress tolerance induced by endophyte Pantoea agglomerans with genes contributing to plant functions and secondary metabolite arsenal / H. Cherif-Silini, B. Thissera, A.C. Bouket and others // Int.J.Mol.Sci. – 2019. – Vol.20. doi: 10.3390/ijms20163989.

Brady C. Phylogeny and identification of Pantoea species associated with plants, humans and the natural environment based on multilocus sequence analysis (MLSA) / C. Brady, I. Cleenwerck, S. Venter and others // Syst.Appl.Microbiol. – 2008. – Vol.31. – P.447–460.

Egorova M. First report of Pantoea ananatis causing grain discolouration and leaf blight of rice in Russia / M. Egorova, E. Mazurin, A.N. Ignatov // New Disease Reports. – 2015. – Vol.32. – P.21.

Kageyama B. Pantoea punctata sp. nov., Pantoea citrea sp. nov., and Pantoea terrea sp. nov. isolated from fruit and soil samples / B. Kageyama, M. Nakae, S. Yagi and others // Int.J.Syst.Bacteriol. – 1992. – Vol.42. – P.203–210.

Azizi M.M.F. The emergence of Pantoea species as a future threat to global rice production / M.M.F. Azizi, S.I. Ismail, M.Y. Ina-Salwany and others // J.Plant Prot.Res. – 2020. doi: 10.24425/jppr.2020.133958.

Tsavkelova E.A. Bacteria associated with orchid roots and microbial production of auxin. / E.A. Tsavkelova, T.A. Cherdyntseva, S.G. Botina and others // Microbiol.Res. – 2007. – Vol.162. – P.69–76.

Acuña J.J. Indole acetic acid and phytase activity produced by rhizosphere bacilli as affected by pH and metals / J. J. Acuña, M.A. Jorquera, O.A. Martínez and others // J.Soil Sci.Plant Nutr. – 2011. – Vol.11. – P.1–12.

Huang Z. Salt stress encourages proline accumulation by regulating proline biosynthesis and degradation in Jerusalem artichoke plantlets / Z. Huang, L. Zhao, D. Chen and others // PLoS ONE. – 2013. – Vol.8. doi:10.1371/journal.pone.0062085.