CALCIUM DEPENDENT RHYTHMIC CHANGES IN THE CONTENT OF NITRIC OXIDE (NO) IN THE ROOTS OF ETIOLATED PEA SEEDLINGS (PISUM SATIVUM L.)

Main Article Content

Anatolij K. Glyan’ko

Abstract

The temporal dynamics (during 30 and 60 min) of nitric oxide generation (NO) in the roots of 2-day etiolated seedlings of pea seeds has been studied. During the exposure of seedlings on water and CaCl2 solution (100 μM), fluctuations in the level of nitric oxide in the roots (its increase and decrease) have been shown. The physiological role of fluctuations in the level of nitric oxide in the root and the participation of calcium ions in this process are discussed.

Article Details

How to Cite
GLYAN’KO, Anatolij K.. CALCIUM DEPENDENT RHYTHMIC CHANGES IN THE CONTENT OF NITRIC OXIDE (NO) IN THE ROOTS OF ETIOLATED PEA SEEDLINGS (PISUM SATIVUM L.). Journal of Agriculture and Environment, [S.l.], n. 3 (4), oct. 2017. ISSN 2564-890X. Available at: <http://jae.cifra.science/article/view/72>. Date accessed: 11 dec. 2017. doi: http://dx.doi.org/10.23649/jae.2017.3.4.1.
Section
Crop production
References
Besson-Bard A., Pugin A., Wendehenne D. 2008. New insights into nitric oxide signaling in plants. Annu. Rev. Plant Biol. 59: 21-39.
Bogdan C. 2001. Nitric oxide and the regulation of gene expression. Trends Cell Biol. 11: 66-75.
Сlementi E. 1998. Role of nitric oxide and its intracellular signaling pathways in the control of Ca2+ homeostasis. Biochem. Pharmacol. 55: 713-718.

Corpas F.J., Barroso J.B., Carreras A., Valderrama R., Palma J.M., Leon A.V., Sandalio L.M., del Rio L.A. 2006. Constitutive arginine-dependent nitric oxide synthase activity in different organs of pea seedlings during plant development. Planta. 224: 246-254.
Courtois C., Besson A., Dahan J., Bourque S., Dobrowolska G., Pugin A., Wendehenne D. 2008. Nitric oxide signaling in plants: interplays with Ca2+ and protein kinases. J. Exp. Bot. 59: 155-163.
Denisenko V.Yu., Kuzmina T.I. 2013. On the problem of identification of intracellular signaling pathways. Biochemistry (Moskow). 78: 431-432.
Demidchi V., Maathuis F.J. 2007. Physiological roles of nonselective cation channels in plants: from salt stress to signaling and development. New Phytol. 175: 387-404.
Downie J.A. 2014. Calcium signals in plant immunity: a spiky issue. New Phytol. 204: 733-735.
Garcia-Mata C., Gay R., Sokolovski S., Hills A., Lamattina L., Blatt M.R. 2003. Nitric oxide regulates K+ and Cl− channels in guard cells through a subset of abscisic acid-evoked signaling pathways. Proc. Natl. Acad. USA. 100: 11116-11121.
Glyan’ko A.K., Ischenko A.A. 2010. Structural and functional characteristics of plant NADPH oxidase: A Review. Appl. Biochem. Microbiol. 46: 463-471.
Glyan’ko A.K., Ischenko A.A., G.G. Vasil’eva. 2012. Vliyanie ionov kal’tsiya na aktivnost NADPH oxidasyi in kornyax etiolirovannyix prorostkov goroxa (Pisum sativum L.) [Influence ions of calcium on activity NADPH oxidase in roots etiolated seedlings of pea (Pisum sativum L.)]. Vestnic Xap’kovskogo Natsional’nogo Agrarnogo Universiteta. Seriya Biologiya. [Bull. Kharkiv Nat. Agr. Univer. Ser. Biol. 2 (18): 46-53] (Ukraina).
Glyan’ko A.K. 2013. Initiation of nitric oxide (NO) synthesis in roots of etiolated seedlings of pea (Pisum sativum L.) under the influence of nitrogen-containing compounds. Biochemistry (Moscow). 78: 471-476.
Glyan’ko A.K., Mitanova N.B., Stepanov A.V. 2010. Phisiologicheskaya rol oksida azota (NO) v rasteniyax [The physiological role of nitric oxide (NO) in plants]. Vestnic Xap’kovskogo Natsional’nogo Agrarnogo Universiteta. Seriya Biologiya. [Bull. Kharkiv Nat. Agr. Univer. Ser. Biol. 1(19): 6-20] (Ukraina).
Granqvist E., Sun J., den CampR. O., Pujic P., Hill L., Normand P., Morris R.J., Downie J.A.,
Geurts R., Oldroyd G.E.D. 2015. Bacterial-induced calcium oscillations are common to nitrogen-fixing associations of nodulating legumes and non-legumes. New Phytol. 207: 551-558.
Gupta K.J., Fernie A.R., Kaiser W.M., van Dongen J.T. 2011. On the origins of nitric oxide. Trends Plant Sci. 16: 160-168.
Jeandroz S., Lamotte O., Astier J., Rasul S., Trapet P., Besson-Bard A., Bourque S., Nicolas-Frances V., Berkowitz G.A., Wendehenne D. 2013. There’s more to the picture than meets the eye: nitric oxide cross talk with Ca2+ signaling. Plant Physiol. 163: 459-470.
Karpets Yu.V., Kolupaev Yu.E., Vayner A.A. 2015. Functional interaction between nitric oxide and hydrogen peroxide during formation of wheat seedlings induced heat resistance. Russian J. Plant Physiol. 62: 65-70.
Kolupaev Yu.E., Karpets Yu.V. 2009. Uchastie oksida azota (NO) v transduktsii abioticheskix stressovyix signalov v rasteniyax [Participation of nitric oxide (NO) in transduction of abiotic stressors signals in plants]. Vestnic Xap’kovskogo Natsional’nogo Agrarnogo Universiteta. Seriya Biologiya [Bull. Kharkiv Nat. Agr. Univer. Ser. Biol. 3 (18): 6-19] (Ukraina).
Kolupaev Yu.E. 2007. Kal’tsiy i stressovyie reactsii v rasteniyax [Calcium and stress reactions of plants]. Vestnic Xap’kovskogo Natsional’nogo Agrarnogo Universiteta. Seriya Biologiya [Bull. Kharkiv Nat. Agr. Univer. Ser. Biol. 1(10): 24-41] (Ukraina).
Lamotte O., Gould K., Lecourieux D., Sequeira-Legrand A., Lebrun-Garcia A., Durner J., Pugin A., Mori I.C., Schroeder J.I. 2004. Reactive oxygen species activation of plant Ca2+ channels. A signaling mechanism in polar growth, hormone transduction, stress signaling, and hypothetically mechanotransduction. Plant Physiol. 135: 702-708.
Medvedev C.C. 2005. Calcium signaling system of plants. Fiziologiya Rastenij (Plant Physiology) (Russia). 52: 282-305.
Miller G., Schlauch K., Tam R., Cortes D., Torres M.A., Shulaev V., Dangi J.L., Mittler R. 2009.The plant NADPH oxidase RBohD mediates rapid systemic in response to diverse stimuli. Sci. Signal. 2: Is. 84. ra 45.
Mittler R., Vanderauwera S., Suzuki N., Miller G., Tognetti V.B., Vandepoele K., Gollery M., Shulaev V., Van Breusegem F. 2011. ROS signaling: the new wave? Trends Plant Sci. 16: 300-309.
Montiel J., Arthikala M-K., Cardenas L., Quinto C. 2016. Legume NADPH oxidases have crucial roles at different stages of nodulation. Int. J. Mol. Sci. 17 (5): 680. Doi: 10.3390/ijms17050680.
Nakatsubo N., Kojima H., Kikuchi K., Nagoshi H., Hirata Y., Maeda D., Imai J., Irimura T., Nagano T. 1998. Direct evidence of nitric oxide production from bovine aortic endothelial cells using new fluorescence indicators: diaminofluoresceins. FEBS Lett. 427: 263-266.
Neill S., Bright J., Desikan R., Hancock J., Harrison J., Wilson I. 2008. Nitric oxide evolution and perception. J. Exp. Bot. 59: 25-35.
Reddy A.S.N. 2001. Calcium: siler bullet in signaling. Plant Sci.160: 381-404.
Steinhorst L., Kudla J. 2013. Calcium and reactive oxygen species rule the waves of signaling. Plant Physiol. 163: 471-485.
Tarchevsky I.A. 2002. Signal’nyie sistemyi rastitel’noy kletki (Signal Systems of Plant Cell) (in Russian) / Moskow: Nauka: 295 p.
Vandelle E., Poinssot B., Wendehenne D., Bentejac M., Pugin A. 2006. Integrated signaling network involving calcium, nitric oxide, active oxygen species but not mitogen-activated protein kinases in BcPG1-elicited grapevine defenses. Mol. Plant-Microbe Interact. 19: 429-440.
Wendehenne D. 2004. Analysis of nitric oxide signaling functions in tobacco cells challenged by the elicitor cryptogein. Plant Physiol. 135: 516-529.
Whalley H.J., Knight M.R. 2013. Calcium signatures are decoded by plants to give specific gene responses. New Phytol. 197: 690-693.
Yun B.W., Feechan A., Yin M., Saidi N.B., Le Bihan T., Yu M., Moore J.W., Kang J.G., Kwon E., Kang J.G., Spoel S.H., Pallas J.A., Loake G.J. 2011. S-nitrosylation of NADPH oxidase regulates cell death in plant immunity. Nature. 478: 264-268.