TEMPERATURE DEPENDENCE OF THE FATTY-ACIDS COMPOSITION OF MITOCHONDRIAL MEMBRANES OF PEA SEEDLINGS BEEN TREATING WITH NITROGEN OXIDE DONOR UNDER WATER DEFICIENCY

Main Article Content

Irina V. Zhigacheva

Abstract

Background: Water deficiency and temperature stress modify cell and organelle membranes, affecting their functions and cell metabolism. In this case, a change in the ratio of unsaturated to saturated fatty acids occurs in the membranes, which leads to a change in the selective permeability of the membranes and the activity of the enzymes associated with them. With the combined action of these factors on the plant organism, synergism in the action of these stressors on the metabolism of plant cells may be observed, or the action of one stressor will reduce the effect of action of another. The exogenous use of signaling molecules or their donors, in particular nitrogen oxide donors, induces plant resistance to stress factors. The aim of the study was to study the fatty acid composition of mitochondrial membranes of etiolated pea seedlings under conditions of insufficient moisture at different temperatures (24o and 17о) and treated with a nitric oxide donor-a tetranitrosyl iron complex with thiosulfate ligands (TNIC-thio).


Methods: The functional state of the mitochondria was studied per the level of lipid peroxidation by the spectrofluorimetry, by a fatty acid composition of mitochondrial membranes with the chromatography technique.


Results: Insufficient moisture led to the activation of lipid peroxidation, which caused changes in the content of C18 and C20 fatty acids (FA). The content of linolenic acid in the membranes of mitochondria of seedlings under water deficiency (WD) and a temperature of 24 decreased by 21.3%, and in the membranes of mitochondria of seedlings grown under the same conditions, but at 17 - by 13%.Changes occurred in the content of C20 FA: the content of 20: 2 6 and 20: 1 9 decreased almost 2.5 times and 1.5 times, respectively (WD + 24o and WD + 17o). The treatment of pea seeds with 10-6M TNIC-thio prevented lipid peroxidation, prevented changes in the composition of the FA membranes of mitochondria and prevented the inhibition of growth of pea seedlings in conditions of water shortage.


Conclusion: It is assumed that a decrease in temperature from 24 to 17 increases the resistance of pea seedlings to insufficient moisture, which is manifested in less significant changes in the fatty acid composition of mitochondrial membranes i.e. observed changes indicate the presence of cross-adaptation. The antistress activity of the drug is apparently due to the fact that it is a NO donor and is determined by its antioxidant activity.

Article Details

How to Cite
ZHIGACHEVA, Irina V.. TEMPERATURE DEPENDENCE OF THE FATTY-ACIDS COMPOSITION OF MITOCHONDRIAL MEMBRANES OF PEA SEEDLINGS BEEN TREATING WITH NITROGEN OXIDE DONOR UNDER WATER DEFICIENCY. Journal of Agriculture and Environment, [S.l.], n. 2 (14), june 2020. ISSN 2564-890X. Available at: <http://jae.cifra.science/article/view/218>. Date accessed: 07 july 2020. doi: http://dx.doi.org/10.23649/jae.2020.2.14.3.
Section
Auxiliary disciplines
References
1. Ванин А.Ф. Динитрозильные комплексы железа с тиол-содержащими лигандами: физико-химия, биология, медицина /А.Ф. Ванин - Москва-?жевск: ?нститут компьютерных исследований, 2015. - 220 с. ISBN 978-5-4344-0276-7.
2. Жигачева ?. В. Тетранитрозильныйбиядерный комплекс железа повышает устойчивость проростков гороха и клеток E. coli к стрессовым воздействиям/ ?. В. Жигачева, С. В. Васильева., ?. П.Генерозова и др. // Биологические мембраны.- 2020.- 37(2).- С. 149–155.
3. Зоров Д.Б. Митохондрия как многоликий Янус/ Д.Б.Зоров, Н.К. ?саев, Е.Ю. Плотников и др // Биохимия. - 2007. - 72 (10). - С. 1371–1384.
4. ?ванова Т.В. Повышенное содержание жирных кислот с очень длинной цепью в липидах вегетативных органов галофитов/ Т.В. ?ванова, Н.А. Мясоедов, В.П. Пчѐлкин и др // Физиология растений. - 2009.- 56.- С. 871−878
5. Кузнецов Вл. В. Водонагнетающая активность корневой системы при кросс-адаптации растений подсолнечника к гипертерми и водному дефициту/ Вл. В. Кузнецов. // Физиология растений.- 2004.- 51 (6).- С. 805-809.
6. Кузнецов Вл. В. Кросс-адаптация растений картофеля к действию низких температур и заражению картофельной цистообразующей нематодой/ Вл. В. Кузнецов, В. П.Холодова // Физиология растений.- 2011.-58 (6).- С. 803 -804.
7. Макаренко С.П. Жирнокислотный состав липидов мембран митохондрий Zea mays и Elymus sibiricus / С.П Макаренко, Ю.М.Константинов, С.В. Хотимченко и др. // Физиология растений. - 2003.- 50. - С. 548−553.
8. Мамаева А.А. Регуляторная роль оксида азота в растениях/ А.А. Мамаева, А.В. Фоменков, ?.Е. Носов и др. //Физиология растений.- 2015.-62 (4). - С. 459–474.
9. Попов В.Н. Влияние ингибиторов электронного транспорта на образование активных форм кислорода при окислении сукцината митохондриями гороха/ В.Н. Попов, Э.К. Руге, А.А Старков// Биохимия.- 2003.- 68 (7).- С.910–916.
10. Пучков М. Ю.?зучение влияния регуляторов роста на овощных культурах/ М. Ю. Пучков, М. М. М. Абделькадер// Естественные науки. Экология. - 2017 - № 1 (58). 13-22.
11. Санина Н. А. Строение и свойства нитрозильных комплексов железа с функциональными серосодержащими лигандами/ Н. А. Санина, С. М.Алдошин // ?зв. РАН. Сер. хим. – 2011. - № 7. – С. 1199-1227.
12. Смолина А.В. Антиоксидантная активность тетранитрозильного комплекса железа с тиосульфатнымилигандами и его влияние на каталитическую активность митохондриальных ферментов в опытах / Смолина А. В. , Полетаева Д. А. , Солдатова Ю. В. и др. // ДАН.- 2019. Т. 488 (5). С. 571-575
13. Чиркова Т. В. Физиологические основы устойчивости растений/ Т. В.Чиркова - Санкт-Петербург: ?здательство Санкт-Петербургского университета, 2002. -244 с.
14. Шакирова Ф.М. Неспецифическая устойчивость растений к стрессовым факторам и ее регуляция./ Ф.М. Шакирова -Уфа: «Гилем», 2001. - 160 с.
15. Ahmad P. Exogenous application of nitric oxide modulates osmolyte metabolism, antioxidants, enzymes of ascorbate-glutathione cycle and promotes growth under cadmium stress in tomato/ P. Ahmad, M.A. Ahanger, M.N. Alyemeni et al. // Protoplasmaю - 2018. -. 255. - P. 79-93. DOI:
16. Ainsworth E.A. Targets for crop biotechnology in a future high-CO2 and high-O3 world/ E.A. Ainsworth, A. Rogers, A.D.B Leakey // Plant Physiol. – 2008 – 147.- 13-19.
17. Atkin O.K. The crucial role of plant mitochondria in orchestrating drought tolerance/ O.K. Atkin, D.Macherel// Annals of Botany. – 2009. -103 - P. 581-597.
18. Bertolli S. C. The level of environmental noise affects the physiological performance of Glycine max under water deficit. / S. C Bertolli, G. M. Souza // Theor. Exp. Plant Physiol. – 2013. -.25 (1). – P. 416
19. Carreau J.P. Adaptation of Macroscale Method to the Microscale for Fatty Acid Methyl Trans esterification of Biological Lipid Extracts/ J.P Carreau., J.P Dubacq // J. Chromatogr.- 1979. - 151. – P. 384−390.
20. Fletcher B.I. Measurement of fluorescent lipid peroxidation products in biological systems and tissues / B.I. Fletcher, C.D. Dillard., A.L.Tappel // Anal. Biochem.-1973. - 52. - P. 1–9
21. Fahad Sh. Exogenously Applied Plant Growth Regulators Enhance the Morpho-Physiological Growth and Yield of Rice under High Temperature/Shah Fahad, Saddam Hussain, Shah Saud, et al.// Front. Plant Sci.- 2016. - 7(7). – P. 1250.
22. Generozova I.P. Mitochondrial respiration after combined action of dehydration and low temperature in pea seedlings/ I.P. Generozova., P.A. Butsanets, A.G Shugaev // Biologia Plantarum. – 2019. – 63.-P. 11- 19.
23. Golovina R.V. Thermodynamic Evalu!ation Interaction of Fatty Acid Methyl Esters with Polar and Nonpolar Stationary Phases, Based on Their Retention Indices Chromatographia/ R.V. Golovina, T.E. Kuzmenko // Chromatography. - 1977. - 10. - P. 545−546.
24. Groß F. Nitric oxide, antioxidants and prooxidants in plant defence responses/ F.Groß, J. Durner, F. Gaupels // Front Plant Sci.- 2013.- 4.- P. 419.
25. Guo Yun-ping, Li Jia-rui (2002). Changes of fatty acids composition of membrane lipids, ethylene release and lipoxygenase activity in leaves of apricot under drought / Guo Yun-ping, Li Jia-rui // Journ.of Zhejiang University (Agrical & Life Sci). – 2002. - 28(5). - P. 513-517.
26. Lakomkin V.L.Long-lasting hypotensive action of stable preparations of dinitrosyl-iron complexes with thiol-containing ligands in conscious normotensive and hypertensive rat/ V.L. Lakomkin, A.F. Vanin, A.A. Timoshin et al // Nitric Oxide. - 2007. -16 (4).- P.413-418
27. Lambers H. Plant nutrient-acquisition strategies change with soil age/ H. Lambers, J.A Raven, G.R. Shaver et al // Trends Ecol. Evol.- 2008.- 23. - P. 95-103
28. Le Gall H. Cell Wall Metabolism in Response to Abiotic Stress/ H Le Gall, F. Philippe, J.M.,Domon et al.// Plants (Basel).- 2015. - 4(1). – P.112-166.
29. Marvasi M. Use and perspectives of nitric oxide donors in agriculture /M.Marvasi // Journal of the Science of Food and Agriculture. - 2017. - 97 (4). - P. 1065-1072.
30. Nabi R. B. S.. Nitric oxide regulates plant responses to drought, salinity, and heavy metal stress / R. B. S. Nabi, R. Tayade, A. Hussain et al. // Environmental and Experimental Botany. - 2019.- 161.- P. 120-133
31. Okçu G.. Effects of Salt and Drought Stresses on Germination and Seedling Growth of Pea (Pisum sativum L.) / G. Okçu, M.D.Kaya, M. Atak // Turk J Agric For.- 2005.-29.- P. 237-242.
32. Peng M. The Effect of Plant Growth Regulator and Active Charcoal on the Development of Microtubers of Potatoes / M. Peng, X. Wang, L. Li// AJPS. – 2012.-3(11). – P. 1535-1540
33. Raffaele S. A MYB transcription factor regulates very-long chain fatty acid biosynthesis for activation of the hypersensitive cell death response in Arabidopsis / S. Raffaele, F.Vailleau, A Léger.et al. //Plant Cell.- 2008.- 20.- P. 752–767.
34. Seabra A. B .How nitric oxide donors can protect plants in a changing environment: what we know so far and perspectives / A. B. Seabra, H. C. Oliveira // AIMS Molecular Science. - 2016. - 3(4). - P. 692-718
35. Vladimirov Y.A. Lipid peroxidation in mitochondrial membrane/ Y.A. Vladimirov , V.I. Olenev, T.B. Suslova// Adv Lipid Res.- 1980, -17. - P.173-249.
36. Wang J. Fatty Acid Determination in Chicken Egg Yolk.A Comparison of Different Methods/ J. Wang, H.Sunwoo, G. Cherian et al// Poultry. Science. - 2000. – 79. – P.1168−1171.
37. Yue Niu. An Overview of Biomembrane Functions in Plant Responses to High-Temperature Stress/ Yue Niu, Yun Xiang// Front. Plant Sci. – 2018. - 9. – P. 915-935.