Main Article Content

Alexey Mikhailovich Osintsev
Vladimir Ilyich Braginsky


Understanding the role of calcium in colloidal stability of casein micelles, that is unquestionable, could become the key to control the process of milk coagulation. It is evident that calcium ions can influence milk coagulation, but the molecular mechanism of this influence to micellar casein system is not fully understandable. Methodologically, our research was based on an idea that calcium ions can change the electric charge of casein micelles in the process of dissociation and recombination of some kinds of phosphoproteins, which are components of the casein micelles. A simple quantitative model, which includes kinetic description of the proteolysis process and the thermodynamics of the dissociation process of the functional groups of micellar caseins, was worked out to analyze experimental results. Kinetic and thermodynamic methods of describing the process of stability loss in micellar system were combined in one model, using the concept of solvent quality which is defined by the second osmotic virial coefficient. Our experiments showed that calcium ions are able to connect chemically to caseins in the micelles. Using reasonable assessments for thermodynamic and kinetic parameters, we managed to get quite adequate description of the experimental data. We also demonstrated principal possibility of using our model to describe rennet, acid and mixed acid-rennet clotting of milk as well as heat-calcium and heat-acid coagulation of milk.

Article Details

How to Cite
OSINTSEV, Alexey Mikhailovich; BRAGINSKY, Vladimir Ilyich. PHOSPHOPROTEINS AS A FACTOR FOR COLLOID STABILITY OF CASEIN MICELLES IN MILK. Journal of Agriculture and Environment, [S.l.], n. 1 (9), may 2019. ISSN 2564-890X. Available at: <>. Date accessed: 28 nov. 2020. doi:
Handling, transporting, storage and protection of agricultural products
Michael H. Tunick. The Science of Cheese. 1st ed. Oxford University Press; 2014. 281 p.
Fox P.F., Guinee, T.P. Cogan, T.M., McSweeney, P.L.H. 2nd ed. Fundamentals of Cheese Science. Springer; 2017. 798 p.
Dalgleish D.G. Casein micelles as colloids: Surface structure and stabilities. Journal of Dairy Science. 1998;81;3013:3018. DOI: 10.3168/jds.S0022-0302(98)75865-5
Horne D.S. Casein structure, self-assembly, and gelation. Current Opinion in Colloid and Interface Science. 2002;7;456:461. DOI: 10.1016/S1359-0294(02)00082-1
Dalgleish D.G. On the structural models of bovine casein micelles – review and possible improvements. Soft Matter. 2011;7;2265:2272. DOI: 10.1039/c0sm00806k
De Kruif C.G. Huppertz T., Urban V.S., Petukhov A.V. Casein micelles and their internal structure. Advances in Colloid and Interface Science. 2012;171–172;36:52. DOI: 10.1016/j.cis.2012.01.002
De Kruif C.G. Zhulina E.B. -Casein as a polyelectrolyte brush on the surface of casein micelles. Colloids Surfaces A. 1996;117;151:159. DOI: 10.1016/0927-7757(96)03696-5
Tuinier R., De Kruif C.G. Stability of casein micelles in milk. Journal of Chemical Physics. 2002;17;1290:1295. DOI: 10.1063/1.1484379
Horne D.S., Lucey J.A. Rennet-Induced Coagulation of Milk. In: McSweeney P.L.H., Fox P.F., Cotter P.D., Everett D.W., editors. Cheese: Chemistry, Physics and Microbiology. 4th ed. Academic Press; 2017. p. 15-143. DOI: 10.1016/B978-0-12-417012-4.00005-3
De Kruif C.G. Supra-aggregates of casein micelles as a prelude to coagulation. Journal of Dairy Science. 1998;81;3019:3028. DOI: 10.3168/jds.S0022-0302(98)75866-7
Lucey J.A. Acid Coagulation of Milk. In: McSweeney P., O'Mahony J., editors. Advanced Dairy Chemistry. Springer; 2016. p. 309-328. DOI: 10.1007/978-1-4939-2800-2_12
McSweeney P.L.H., Ottogalli G., Fox P.F. Diversity and Classification of Cheese Varieties: An Overview In: McSweeney P.L.H., Fox P.F., Cotter P.D., Everett D.W., editors. Cheese: Chemistry, Physics and Microbiology. 4th ed. Academic Press; 2017. p. 781-808. DOI: 10.1016/B978-0-12-417012-4.00031-4
Farkye N.Y. Acid-Heat Coagulated Cheeses. In: McSweeney P.L.H., Fox P.F., Cotter P.D., Everett D.W., editors. Cheese: Chemistry, Physics and Microbiology. 4th ed. Academic Press; 2017. p. 1111-1115. DOI: 10.1016/B978-0-12-417012-4.00044-2
Ramasubramanian L., D'Arcy B.R., Deeth H.C. Heat-induced coagulation of whole milk by high levels of calcium chloride. International Journal of Dairy Technology 2012;65;183:190. DOI: 10.1111/j.1471-0307.2012.00823.x
Koutina G., Christensen M., Bakman M., Andersen U., Skibsted L.H. Calcium induced skim-milk gelation during heating .as affected by pH. Dairy Science and Technology. 2016;96;79:93. DOI: 10.1007/s13594-015-0240-7
Horne D.S., Muir D.D. Alcohol and Heat Stability of Milk Protein. Journal of Dairy Science. 1990;73;3613-3626. DOI: 10.3168/jds.S0022-0302(90)79064-9
Udabage P., McKinnon I.R., Augustin M.A. Effects of mineral salts and calcium chelating agents on the gelation of renneted skim milk. Journal of Dairy Science. 2001;84;1569:1575. DOI: 10.3168/jds.S0022-0302(01)74589-4
Tsioulpas A., Michael J.L., Grandison A.S. Effect of Minerals on Casein Micelle Stability of Cows’ Milk. Journal of Dairy Research. 2007;74;167:173. DOI: 10.1017/S0022029906002330
Dalgleish D.G., Parker T.G. Binding of calcium ions to bovine s1-casein and precipitability of the protein-calcium ion complexes. Journal of Dairy Research. 1980;47;113:122. DOI: 10.1017/S002202990002094X
Parker T.G., Dalgleish D.G. Binding of calcium ions to bovine -casein, Journal of Dairy Research. 1981;48;71:76. DOI: 10.1017/S0022029900021476
Wahlgren N.M., Dejmek P., Drakenberg T. Binding of Mg2+ and Ca2+ to -casein A1: a multi-nuclear magnetic resonance study. Journal of Dairy Research. 1993;60;65:78. DOI: 10.1017/S0022029900027357
Osintsev A. Theoretical and practical aspects of the thermographic method for milk coagulation research. Food and Raw Materials. 2014;2;147:155
Hori T. Objective Measurements of the Process of Curd Formation during Rennet Treatment of Milks by the Hot Wire Method. Journal of Food Science. 1985;50;911:917. DOI: 10.1111/j.1365-2621.1985.tb12978.x
Osintsev A.M., Gromov E.S., Braginsky V.I. A phenomenological model of milk coagulation. Food and Raw Materials. 2013;1;11:18
Vliegenthart G. A., Lekkerkerker H. N. W. Predicting the gas-liquid critical point from the second virial coefficient. Journal of Chemical Physics. 2000;112;5364:5369. DOI: 10.1063/1.481106
Tuinier R., de Kruif C. G. Stability of casein micelles in milk. Journal of Chemical Physics. 2002;117;1290:1295. DOI: 10.1063/1.1484379
Vasbinder A.J., Rollema H.S., De Kruif C.G. Impaired rennetability of heated milk; study of enzymatic hydrolysis and gelation kinetics. Journal of Dairy Science. 2003;86;1548:1555. DOI: 10.3168/jds.S0022-0302(03)73740-0
Sandra S., Ho M., Alexander M., Corredig M. Effect of soluble calcium on the renneting properties of casein micelles as measured by rheology and diffusing wave spectroscopy. Journal of Dairy Science. 2012;95;75:82. DOI: 10.3168/jds.2011-4713
McSweeney P.L., Olson N.F., Fox P.F., Healy A., Hojrup P. Proteolytic specificity of chymosin on bovine alpha s1-casein. Journal of Dairy Research. 1993;60;401:412. DOI: 10.1017/S0022029900027734
McSweeney P.L.H., Fox P.F., Olson N.F. Proteolysis of bovine caseins by cathepsin D: Preliminary observations and comparison with chymosin. International Dairy Journal. 1995;5;321:336. DOI: 10.1016/0958-6946(94)00010-M
Hynes E.R., Aparo L., Candioti M.C. Influence of residual milk-clotting enzyme on s1 casein hydrolysis during ripening of Reggianito Argentino cheese. Journal of Dairy Science. 2004;87;565:573. DOI: 10.3168/jds.S0022-0302(04)73198-7